1/09/2018

[測度論] 連續函數必定可測

令 $X,Y$ 為 metric space,定義 $\mathcal{B}_X$ 與 $\mathcal{B}_Y$ 為其上的 Borel $\sigma$-algebra (generated by some open sets)。

Claim: $f:X \to Y$ 為連續函數 on $X$,則 $f$ 為 $(\mathcal{B}_X, \mathcal{B}_Y)$-measurable。

Proof: 令 $E \in \mathcal{B}_Y$,我們要證明 $f^{-1}(E) \in \mathcal{B}_X $。注意到若 $E$ 為 任意 set generates $\mathcal{B}_Y$; e.g., $E$ be open set,則由連續函數性質可知 $f^{-1}(E)$ 亦為 open ,故 $f^{-1}(E) \in \mathcal{B}_X$。$\square$

沒有留言:

張貼留言

[Claude] 國小數學加減乘除法計算小遊戲:數學怪獸大亂鬥

心血來潮用 Anthropic Claude Opus 4.6 做的簡單國小數學乘除法計算小遊戲,感嘆AI工具之強大與便利。原本可能要耗時幾天的工作轉眼就完成,時代的巨輪確實在飛速轉動。  數學怪獸大亂鬥(Math Monster Brawl)對戰的國小數學 加減乘除 小遊戲連結...