2018年3月27日 星期二

[測度論] $\mathbb{R}$ 上的外測度

令 $A \subset \mathbb{R}^*$ ,定義 outer measure $m^*: \mathcal{P}(\mathbb{R}) \to [0,\infty]$ 滿足
\[{m^*}(A): = \mathop {\inf }\limits_{A \subset \bigcup\limits_j^{} {\left[ {{a_j},{b_j}} \right]} } \sum\limits_j^{} {\left( {{b_j} - a_j^{}} \right)} \]

以下我們檢驗幾個性質

Property of Outer Measure on R:
1. $m^*(\emptyset) = 0$
2. Monotonicity: 若 $A \subset B$ 則 $m^*(A) \subset m^*(B)$
3. Subadditivity: $m^*(\cup_j^\infty A_j) \leq \sum_j^\infty m^*(A_j)$

Proof:
1. 取 $A:= \emptyset$ 則任意區間必定涵蓋 $\emptyset$,故 $m^*(\emptyset) = 0$。

2. 若 $A \subset B$ 則存在一組區間 $I_{j} := [a_{j}, b_{j}]$, $j=1,2...$  使得 $A \subset B \subset \cup_{j=1}^\infty [a_{j}, b_{j}]$,故由定義可知 $m^*(A) \subset m^*(B)$。

3. 首先觀察 $m^*(A_j)$ 定義中有 infimum,故給定 $\varepsilon>0$ 可知必定存在一組區間 $I_{j,k} := [a_{j,k}, b_{j,k}]$, $k=1,2...$  使得 $A_j \subset \cup_{k=1}^\infty [a_{j,k}, b_{j,k}]$
\[
\sum\limits_k^{} {\left( {{b_{j,k}} - a_{j,k}^{}} \right)}  < {m^*}(A_j) + \frac{\varepsilon}{10^j} \]由此可知
\[
\sum\limits_{j,k}^{} {\left( {{b_{j,k}} - a_{j,k}^{}} \right)}  < \sum\limits_j^{} {\left( {{m^*}(A_j) + \varepsilon } \right)}  = \sum_j^\infty {m^*}(A_j) + \varepsilon \sum\limits_j^{} {\left( {\frac{1}{{{{10}^j}}}} \right)}
\]注意到區間 $I_{j,k}$, $j,k=1,2,...$ 涵蓋 $\cup_j A_j$,亦即
\[ \cup _j^\infty {A_j} \subset \bigcup\limits_{j,k}^{} {\left[ {{a_{j,k}},{b_{j,k}}} \right]}
\]故由前述的性質2 (Monotonicity),
\[{m^*}( \cup _j^\infty {A_j}) \leqslant \sum\limits_{j,k}^{} {\left( {{b_{j,k}} - a_{j,k}^{}} \right)}  < \sum_j^\infty {m^*}(A_j) + \varepsilon \sum\limits_j^{} {\left( {\frac{1}{{{{10}^j}}}} \right)} \]由於 $\varepsilon$ 為任取,讓 $\varepsilon \to 0$ 我們有
$$m^*(\cup_j^\infty A_j) \leq \sum_j^\infty m^*(A_j)$$即為所求。$\square$


Remarks:
上述的性質可以用來定義外測度對任意空間可以給出更為一般的(公理化)定義如下:

Definition: Abstract Outer Measure
我們說 $\mu^*: \mathcal{P}(X) \to [0,\infty]$ 為 abstract outer measure on $X$若下列條件成立
1. $m^*(\emptyset) = 0$
2. Monotonicity: 若 $A \subset B$ 則 $m^*(A) \subset m^*(B)$
3. Subadditivity: $m^*(\cup_j^\infty A_j) \leq \sum_j^\infty m^*(A_j)$