5/09/2018

[測度論] 何時 兩可測函數相乘之積分 會與 個別先做積分後再相乘 相等?

Theorem: 
令 $(X,\mathcal{M,\mu})$ 與 $(Y, \mathcal{N},\nu)$ 為任意測度空間。
(a) 若 $f: X \to \mathbb{R}$ 為 $\mathcal{M}$-measurable 且 $g: Y \to \mathbb{R}$ 為  $\mathcal{N}$-measurable 且我們定喔 $h(x,y):=f(x)g(y)$ 則 $h$ 為 $\mathcal{M} \otimes \mathcal{N}$-measurable。
(b) 若 $f \in L^1(\mu)$ 且 $g \in L^1(\nu)$,則 $h \in L^1(\mu \times \nu)$ 且
\[
\int h \; d(\mu \times \nu) = \left( \int f d\mu \right) \left( \int g d \nu \right)
\]

Proof (a):
令 $a \in \mathbb{R}$,考慮 $A:=[a,\infty) \in \mathcal{B}_{\mathbb{R}}$我們要證明
\[
h^{-1}(A) \in \mathcal{M} \otimes \mathcal{N}
\]注意到因為 $f: X \to \mathbb{R}$ 為 $\mathcal{M}$-measurable 且 $g: Y \to \mathbb{R}$ 為  $\mathcal{N}$-measurable ,我們有 $f^{-1}([a,\infty)) \in \mathcal{M}$ 與 $g^{-1}([a,\infty)) \in \mathcal{N}$ 。

現在定義兩個新函數 $F,G: X\times Y \to \mathbb{R}$ 分別滿足 $F(x,y) := f(x), \forall y \in Y$ ,$G(x,y):=g(y), \forall x \in X$,則我們可知 $h $ 為 $F$ 與 $G$ 相乘,亦即 $h=FG$。現在觀察
\begin{align*}
 {F^{ - 1}}(A) &= \left\{ {(x,y) \in X \times Y:F(x,y) \in [a,\infty )} \right\}  \\
  &  = \left\{ {(x,y) \in X \times Y:f\left( x \right) \in [a,\infty ),\forall y \in Y} \right\}  \\
  &  = \left\{ {x \in X:f\left( x \right) \in [a,\infty )} \right\} \times Y  \\
  &  = \underbrace {{f^{ - 1}}\left( {[a,\infty )} \right)}_{\in \mathcal M} \times \underbrace Y_{ \in {\mathcal N}} \in {\mathcal M} \otimes {\mathcal N}
\end{align*}
同理
\begin{align*}
 {G^{ - 1}}(A) &= \left\{ {(x,y) \in X \times Y: G(x,y) \in [a,\infty )} \right\}  \\
  &  = \left\{ {(x,y) \in X \times Y:g\left( x \right) \in [a,\infty ),\forall x \in X} \right\}  \\
  &  =  X \times  \left\{ {y \in Y : g\left( x \right) \in [a,\infty )} \right\} \\
  &  = \underbrace X_{ \in {\mathcal M}} \times \underbrace {{g^{ - 1}}\left( {[a,\infty )} \right)}_{ \in {\mathcal N}} \in {\mathcal M} \otimes {\mathcal N}
\end{align*}亦即,$F,G \in \mathcal{M} \otimes \mathcal{N}$,故由 相乘保證 measurability 性質可知 $FG  \in \mathcal{M} \otimes \mathcal{N}$,亦即 $h  \in \mathcal{M} \otimes \mathcal{N}$。

Proof (b): 首先證明 $h \in L^1(\mu \times \nu)$,亦即要證
\[
\int |h| d(\mu \times \nu) < \infty
\]由於 $|h| \in L^+(X \times Y)$,故由 Tonelli Theorem 可知
\[
\int |h| d(\mu \times \nu) = \int \int |f(x)| |g(y)| d \mu(x) d\nu(y)  <\infty
\]上述不等式成立因為 $f \in L^1(\mu)$ 與 $g \in L^1(\nu)$。故 $h \in L^1(\mu \times \nu)$。

接著由於 $h \in L^1$ ,利用 Fubini theorem 我們可寫
\[
\int h d(\mu \times \nu) = \int \int FG d\mu d\nu = \int f(x) d\mu(x) \int g(x) d\nu(y)
\]即為所求。$\square$

5/04/2018

[集合論] $\{x: 2^n < |f(x)| < 2^{n+1}\}$ 為 disjoint

Claim: 令 $f \in L^1$ 且 考慮集合
\[
A_n:=\{x: 2^n < |f(x)| < 2^{n+1}\}
\]其中 $n \in \mathbb{Z}$則對任意 $n \neq m$, $A_n \cap A_m = \emptyset$

Proof: 用反證法,令 $n \neq m$ (假設 $n > m$),$ A_n \cap A_m \neq \emptyset$。亦即存在 $x_0 \in A_n \cap A_m \neq \emptyset$。此表明 $x_0 \in A_n$ 且 $x_0 \in A_m$。則由 $x_0 \in A_n  $ 我們有 \[
2^n < |f(x_0)| <2^{n+1}
\]同樣地,由 $x_0 \in A_m$ 可推得 \[
2^m < |f(x_0)| < 2^{m+1}
\]換言之,我們有 $|f(x_0)| \in (2^n, 2^{n+1})$ 且 $|f(x_0)| \in (2^{m}, 2^{m+1})$ 得到矛盾,因為 $(2^n, 2^{n+1}) \cap (2^m, 2^{m+1}) = \emptyset $。故 $A_n$ 為 disjoint $\square$

[最佳化] C^2 函數一階逼近的餘項積分表示

令 $f: \mathbb{R}^m \to \mathbb{R}$ 為 $C^2$-函數。對 $f$ 在 $y$ 附近使用一階泰勒展開: \[ T_y(x) := f(y) + \nabla f(y)^\top (x - y) \] 則其餘項 $R(x,y)$ 訂為 $$R(...