跳到主要內容

[測度論] 何時 兩可測函數相乘之積分 會與 個別先做積分後再相乘 相等?

Theorem: 
令 $(X,\mathcal{M,\mu})$ 與 $(Y, \mathcal{N},\nu)$ 為任意測度空間。
(a) 若 $f: X \to \mathbb{R}$ 為 $\mathcal{M}$-measurable 且 $g: Y \to \mathbb{R}$ 為  $\mathcal{N}$-measurable 且我們定喔 $h(x,y):=f(x)g(y)$ 則 $h$ 為 $\mathcal{M} \otimes \mathcal{N}$-measurable。
(b) 若 $f \in L^1(\mu)$ 且 $g \in L^1(\nu)$,則 $h \in L^1(\mu \times \nu)$ 且
\[
\int h \; d(\mu \times \nu) = \left( \int f d\mu \right) \left( \int g d \nu \right)
\]

Proof (a):
令 $a \in \mathbb{R}$,考慮 $A:=[a,\infty) \in \mathcal{B}_{\mathbb{R}}$我們要證明
\[
h^{-1}(A) \in \mathcal{M} \otimes \mathcal{N}
\]注意到因為 $f: X \to \mathbb{R}$ 為 $\mathcal{M}$-measurable 且 $g: Y \to \mathbb{R}$ 為  $\mathcal{N}$-measurable ,我們有 $f^{-1}([a,\infty)) \in \mathcal{M}$ 與 $g^{-1}([a,\infty)) \in \mathcal{N}$ 。

現在定義兩個新函數 $F,G: X\times Y \to \mathbb{R}$ 分別滿足 $F(x,y) := f(x), \forall y \in Y$ ,$G(x,y):=g(y), \forall x \in X$,則我們可知 $h $ 為 $F$ 與 $G$ 相乘,亦即 $h=FG$。現在觀察
\begin{align*}
 {F^{ - 1}}(A) &= \left\{ {(x,y) \in X \times Y:F(x,y) \in [a,\infty )} \right\}  \\
  &  = \left\{ {(x,y) \in X \times Y:f\left( x \right) \in [a,\infty ),\forall y \in Y} \right\}  \\
  &  = \left\{ {x \in X:f\left( x \right) \in [a,\infty )} \right\} \times Y  \\
  &  = \underbrace {{f^{ - 1}}\left( {[a,\infty )} \right)}_{\in \mathcal M} \times \underbrace Y_{ \in {\mathcal N}} \in {\mathcal M} \otimes {\mathcal N}
\end{align*}
同理
\begin{align*}
 {G^{ - 1}}(A) &= \left\{ {(x,y) \in X \times Y: G(x,y) \in [a,\infty )} \right\}  \\
  &  = \left\{ {(x,y) \in X \times Y:g\left( x \right) \in [a,\infty ),\forall x \in X} \right\}  \\
  &  =  X \times  \left\{ {y \in Y : g\left( x \right) \in [a,\infty )} \right\} \\
  &  = \underbrace X_{ \in {\mathcal M}} \times \underbrace {{g^{ - 1}}\left( {[a,\infty )} \right)}_{ \in {\mathcal N}} \in {\mathcal M} \otimes {\mathcal N}
\end{align*}亦即,$F,G \in \mathcal{M} \otimes \mathcal{N}$,故由 相乘保證 measurability 性質可知 $FG  \in \mathcal{M} \otimes \mathcal{N}$,亦即 $h  \in \mathcal{M} \otimes \mathcal{N}$。

Proof (b): 首先證明 $h \in L^1(\mu \times \nu)$,亦即要證
\[
\int |h| d(\mu \times \nu) < \infty
\]由於 $|h| \in L^+(X \times Y)$,故由 Tonelli Theorem 可知
\[
\int |h| d(\mu \times \nu) = \int \int |f(x)| |g(y)| d \mu(x) d\nu(y)  <\infty
\]上述不等式成立因為 $f \in L^1(\mu)$ 與 $g \in L^1(\nu)$。故 $h \in L^1(\mu \times \nu)$。

接著由於 $h \in L^1$ ,利用 Fubini theorem 我們可寫
\[
\int h d(\mu \times \nu) = \int \int FG d\mu d\nu = \int f(x) d\mu(x) \int g(x) d\nu(y)
\]即為所求。$\square$

留言

這個網誌中的熱門文章

[數學分析] 什麼是若且唯若 "if and only if"

數學上的 if and only if  ( 此文不討論邏輯學中的 if and only if,只討論數學上的 if and only if。) 中文翻譯叫做  若且唯若 (or 當且僅當) , 記得當初剛接觸這個詞彙的時候,我是完全不明白到底是甚麼意思,查了翻譯也是愛莫能助,畢竟有翻跟沒翻一樣,都是有看沒有懂。 在數學上如果看到 if and only if  這類的句子,其實是表示一種 雙條件句 ,通常可以直接將其視為" 定義(Definition)" 待之,今天要分享的是這樣的一個句子如何用比較直觀的方法去看他 假設我們現在有 兩個邏輯陳述句 A 與  B. 注意到,在此我們不必考慮這兩個陳述句到底是什麼,想表達什麼,或者到底是否為真(true),這些都不重要。只要知道是兩個陳述即可。 現在,考慮新的陳述:  "A if and only if B" 好了,現在主角登場,我們可以怎麼看待這個句子呢? 事實上我們可以很直覺的把這句子拆成兩部分看待,也就是 "( A if B ) and ( A only if B )" 那麼先針對第一個部分  A if B  來看, 其實這句就是說  if B then A, 更直白一點就是 "if B is true, then A is also true".  在數學上等價可以寫為 "B implies A" .  或者更常用一個箭頭符號來表示 "B $\Rightarrow$  A"  現在針對第二個部分  A only if B 此句意指  "If B is not true, then A is also not true". 所以如果已知 A is true,  那麼按照上句不難推得 B is also true 也就是說  A only if B  等價為 "If A is true then B is also true". 同樣,也可以寫作   "A implies B"   或者用箭頭表示  "A   $\Rightarrow$     B".

[數學分析] 淺談各種基本範數 (Norm)

這次要介紹的是數學上一個重要的概念: Norm: 一般翻譯成 範數 (在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 Norm 想成長度就好 (事實上norm是長度的抽象推廣), 也許讀者會認為好端端的長度不用,為何又要發明一個 norm 來自討苦吃?? 既抽象又艱澀。 事實上想法是這樣的: 比如說現在想要比較兩個數字 $3$ , $5$ 之間的大小,則我們可以馬上知道 $ 3 < 5 $;同樣的,如果再考慮小數與無理數如 $1.8753$ 與 $\pi$,我們仍然可以比較大小 $1.8753 < \pi = 3.1415...$ 故可以發現我們有辦法對 "純量" 做明確的比大小,WHY? 因為前述例子中 $3$, $5$, $1.8753$ or $\pi$ 其各自的大小有辦法被 "measure "! 但是如果是現在考慮的是一組數字 我們如何去measure 其大小呢?? 比如說 \[x:=[1, -2, 0.1, 0 ]^T \]上式的大小該是多少? 是 $1$? $-2$? $0.1$??? 再者如果更過分一點,我們考慮一個矩陣 \[A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 3&4 \end{array}} \right] \],想要知道這個矩陣的大小又該怎麼辦?? 是 $1$ ? $2$ 還是 $4$ ?..其實現階段我們說不清楚。 也正是如此,可以發現我們確實需要新的 "長度" 的定義來幫助我們如何去 measure 矩陣/向量/甚至是函數的大小。 故此,我們首先定義甚麼是Norm,(也就是把 "長度" or "大小" 的本質抽離出來) ================== Definition: Norm 考慮 $V$ 為一個向量空間(Vector space),則我們說  Norm 為一個函數 $||\cdot|| : V \rightarrow \mathbb{R}$ 且滿足下列性質