跳到主要內容

[最佳化] 對原最佳化問題的解是否能"回收"使用到新最佳化問題

令 $J: \mathbb{R}^n \to \mathbb{R}$ ,考慮以下最佳化問題
\[
\min_{x_1,x_2,...x_n} J(x_1,x_2,...x_n)  := J(x_1^*,x_2^*,...,x_n^*)
\]上述 $x_i^*$ 表示最佳解。現在考慮新的目標函數 $G: \mathbb{R}^n \to \mathbb{R}$ 為 上述的 $J:\mathbb{R}^n \to \mathbb{R}$ 額外加上新的函數 $F: \mathbb{R}^n \to \mathbb{R}$,亦即
\[
 G(x_1,x_2,...,x_n) :=J(x_1,x_2,...,x_n) + F(x_1,x_2,...,x_n)
\]我們想問前述獲得的最佳解 $x_1^*,x_2^*,.., x_n^*$ 是否仍然對新的目標函數成立?換句話說,是否能夠 "回收" 之前已經算好的最佳解  $ x_i^*$ 用在新的目標函數 $G$ 上呢。答案是否定的。考慮以下一個簡單的反例

Example:
對 $i=1,2,$,令 $x_i \in [-1,1]$並且將所有符合此條件的 $x_i$ 所成之集合記作 $\mathcal{X}$。現在考慮目標函數 $J(x_1,x_2) := x_1^2+x_2^2$ 並且 我們要求
$$
\min_{x_1,x_2 \in \mathcal{X}} J(x_1,x_2) =  \min_{x_1,x_2 \in \mathcal{X}}x_1^2+x_2^2
$$則最佳解不難發現為 $x_1^*=x_2^*=0$。現在我們考慮新的目標函數,將其記作
$$
G(x_1,x_2) :=J(x_1,x_2) + x_2
$$亦即 $G$ 為舊的目標函數 $J$ 額外加上 線性函數 $x_2 $。我們要求
$$
\min_{x_1,x_2 \in \mathcal{X}} G(x_1,x_2) = \min_{x_1,x_2 \in \mathcal{X}} x_1^2+x_2^2 + x_2
$$其最佳解變成 $x_1^* = 0$ 但 $x_2^* = -1/2 \;\;\; ( \neq 0)$。亦即舊的最佳解不能被"回收"使用。

Comments:
1. 上述謬誤偶爾能在文獻中發現。讀者應小心並盡量避免犯此錯誤。
2. 上述例子中若要使原最佳解可以被回收使用到新最佳解有很多方法,比如限制 可行集 $\mathcal{X}$ 將其改為 $0 \leq x_i \leq 1$ 便是一種。但是否符合需求又是另外一層考量。
3. 上述例子中若把 $\mathcal{X} := \mathbb{R}^2$,則有拘束最佳化問題變成無拘束最佳化問題,但反例仍然成立。


留言

這個網誌中的熱門文章

[數學分析] 什麼是若且唯若 "if and only if"

數學上的 if and only if  ( 此文不討論邏輯學中的 if and only if,只討論數學上的 if and only if。) 中文翻譯叫做  若且唯若 (or 當且僅當) , 記得當初剛接觸這個詞彙的時候,我是完全不明白到底是甚麼意思,查了翻譯也是愛莫能助,畢竟有翻跟沒翻一樣,都是有看沒有懂。 在數學上如果看到 if and only if  這類的句子,其實是表示一種 雙條件句 ,通常可以直接將其視為" 定義(Definition)" 待之,今天要分享的是這樣的一個句子如何用比較直觀的方法去看他 假設我們現在有 兩個邏輯陳述句 A 與  B. 注意到,在此我們不必考慮這兩個陳述句到底是什麼,想表達什麼,或者到底是否為真(true),這些都不重要。只要知道是兩個陳述即可。 現在,考慮新的陳述:  "A if and only if B" 好了,現在主角登場,我們可以怎麼看待這個句子呢? 事實上我們可以很直覺的把這句子拆成兩部分看待,也就是 "( A if B ) and ( A only if B )" 那麼先針對第一個部分  A if B  來看, 其實這句就是說  if B then A, 更直白一點就是 "if B is true, then A is also true".  在數學上等價可以寫為 "B implies A" .  或者更常用一個箭頭符號來表示 "B $\Rightarrow$  A"  現在針對第二個部分  A only if B 此句意指  "If B is not true, then A is also not true". 所以如果已知 A is true,  那麼按照上句不難推得 B is also true 也就是說  A only if B  等價為 "If A is true then B is also true". 同樣,也可以寫作   "A implies B"   或者用箭頭表示  "A   $\Rightarrow$     B".

[數學分析] 淺談各種基本範數 (Norm)

這次要介紹的是數學上一個重要的概念: Norm: 一般翻譯成 範數 (在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 Norm 想成長度就好 (事實上norm是長度的抽象推廣), 也許讀者會認為好端端的長度不用,為何又要發明一個 norm 來自討苦吃?? 既抽象又艱澀。 事實上想法是這樣的: 比如說現在想要比較兩個數字 $3$ , $5$ 之間的大小,則我們可以馬上知道 $ 3 < 5 $;同樣的,如果再考慮小數與無理數如 $1.8753$ 與 $\pi$,我們仍然可以比較大小 $1.8753 < \pi = 3.1415...$ 故可以發現我們有辦法對 "純量" 做明確的比大小,WHY? 因為前述例子中 $3$, $5$, $1.8753$ or $\pi$ 其各自的大小有辦法被 "measure "! 但是如果是現在考慮的是一組數字 我們如何去measure 其大小呢?? 比如說 \[x:=[1, -2, 0.1, 0 ]^T \]上式的大小該是多少? 是 $1$? $-2$? $0.1$??? 再者如果更過分一點,我們考慮一個矩陣 \[A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 3&4 \end{array}} \right] \],想要知道這個矩陣的大小又該怎麼辦?? 是 $1$ ? $2$ 還是 $4$ ?..其實現階段我們說不清楚。 也正是如此,可以發現我們確實需要新的 "長度" 的定義來幫助我們如何去 measure 矩陣/向量/甚至是函數的大小。 故此,我們首先定義甚麼是Norm,(也就是把 "長度" or "大小" 的本質抽離出來) ================== Definition: Norm 考慮 $V$ 為一個向量空間(Vector space),則我們說  Norm 為一個函數 $||\cdot|| : V \rightarrow \mathbb{R}$ 且滿足下列性質