7/11/2018

[測度論] Dominated Convergence Theorem

Theorem: Dominated Convergence Theorem DCT  (real-valued functions)
令 sequence $\{f_n\} \subset L^1$ 滿足
(a) $f_n \to f$ almost everywhere
(b) 存在非負函數 $g \in L^1$ 使得 $|f_n| \leq g$ almost everywhere for all $n$
則\[
f \in L^1
\]且
\[
\lim_n \int f_n =\int f
\]
Proof:  先證 $f \in L^1$:由於 $f_n \to f$ almost everywhere  且 $f_n \in L^1$,可知 $f $ measurable (see Proposition 2.11/2.12 )。由於 $|f_n| \leq g$ almost everywhere 故 $|f| \leq g$ almost everywhere,故 $f \in L^1$。

接著我們證 $\lim_n \int f_n =\int f$:注意到 $|f_n| \leq g$ almost everywhere,故我們有
\[
-g \leq f_n \leq g \text{ almost everywhere}
\]換言之,我們有
\[
f_n + g \geq 0\text{ almost everywhere}
\]與
\[
g-f_n \geq 0 \text{almost everywhere}
\]也就是說 $\{f_n + g\}, \{g-f_n\} \in L^+$。由 Fatou Lemma 我們有
\[
\begin{gathered}
  \int {\mathop {\lim \inf }\limits_n } ({f_n} + g) \leqslant \lim \inf \int {({f_n} + g)} ; \hfill \\
  \int {\mathop {\lim \inf }\limits_n } (g - {f_n}) \leqslant \lim \inf \int {(g - {f_n})}  \hfill \\
\end{gathered} \;\;\; (*)
\]注意到上述積分不等式左方,積分項有以下結果 (利用 limsup or liminf 的性質),我們有 $\mathop {\lim \inf }\limits_n \left( {{f_n} + g} \right) = g + \mathop {\lim \inf }\limits_n {f_n}$ 以及 $$\mathop {\lim \inf }\limits_n \left( {g - {f_n}} \right) = g + \mathop {\lim \inf }\limits_n \left( { - {f_n}} \right) = g - \mathop {\lim \sup }\limits_n {f_n}
$$同理,對於積分不等式右方,我們有
\[\lim \inf \int {({f_n} + g)}  = \lim \inf \left( {\int {{f_n} + \int g } } \right) = \lim \inf \int {{f_n} + \int g } \]與
\[\lim \inf \int {(g - {f_n})  = \int {g + \lim \inf \left( { - \int {{f_n}} } \right)}  = \int {g - \lim \sup \int {{f_n}} } } \]
將此結果帶入 $(*)$ 我們有
\begin{align*}
  &\left\{ \begin{gathered}
  \int {\mathop {\lim \inf }\limits_n } ({f_n} + g) \leqslant \lim \inf \int {({f_n} + g)} ; \hfill \\
  \int {\mathop {\lim \inf }\limits_n } (g - {f_n}) \leqslant \lim \inf \int {(g - {f_n})}  \hfill \\
\end{gathered}  \right. \hfill \\
   &\Rightarrow \left\{ \begin{gathered}
  \int g  + \int {\mathop {\lim \inf }\limits_n } {f_n} \leqslant \lim \inf \int {{f_n} + \int g } ; \hfill \\
  \int g  - \int {\mathop {\lim \sup }\limits_n {f_n}}  \leqslant \int {g - \lim \sup \int {{f_n}} }  \hfill \\
\end{gathered}  \right. \hfill \\
   &\Rightarrow \left\{ \begin{gathered}
  \int {\mathop {\lim \inf }\limits_n } {f_n} \leqslant \lim \inf \int {{f_n}} ; \hfill \\
   - \int {\mathop {\lim \sup }\limits_n {f_n}}  \leqslant  - \lim \sup \int {{f_n}}  \hfill \\
\end{gathered}  \right. \hfill \\
\end{align*} 注意到 $f = \lim_n f_n = \liminf_n f_n = \limsup_n f_n$ ,而且 $\{x: \lim_n f_n \neq f(x)\}$ 的測度為 $0$,故 $\int f = \int \liminf f_n  = \int \limsup f_n$。 現在我們進一步改寫上式
\[\begin{gathered}
  \left\{ \begin{gathered}
  \int f  \leqslant \lim \inf \int {{f_n}} ; \hfill \\
  \int f  \geqslant \lim \sup \int {{f_n}}  \hfill \\
\end{gathered}  \right. \hfill \\
   \Rightarrow \lim \sup \int {{f_n} \leqslant \int {f \leqslant \lim \inf \int {{f_n}} } }  \hfill \\
\end{gathered} \]亦即 $\int f_n \to \int f$。至此得證。$\square$



Remarks:
$\liminf (a_k + b+k) = \liminf a_k + \liminf b_k$ 不全為然。Counter example?

上述等式成立僅僅 $\lim a_k = a$ 則 $\liminf_k (a_k + b_k) = a+\liminf b_k$。



沒有留言:

張貼留言

[隨筆] A+焦慮的世代

接住A+世代學生 當了老師之後發現要"接住"學生確實不容易,撇開老師自身可能也有需要被接住的問題不談。我這幾年常常感受到這世代的學生們有著很大的徬徨,不太清楚未來的方向,但是卻有著非得要拿到A/A+不可的糾結,於是課優先選甜涼課,實習競賽投好投滿。好像看著同學...