跳到主要內容

[機率論] 兩隨機變數相等表示兩者有相同分布但反之不然

Claim: 給定機率空間 $(\Omega, \mathcal{F}, P)$,令$X$與$Y$為兩隨機變數。若 $P(X=Y)=1$ 則$X$與$Y$有相同分布,亦即對任意可測集合 $A \in \mathcal{F}$,
$$P(X \in A) = P(Y \in A)$$

Proof: 令$A \in \mathcal{F}$,我們觀察
$$
P(X\in A\cap X\neq Y)\leq P(X\neq Y)=0
$$ 故可推得 $P(X\in A\cap X\neq Y)=0$。利用此結果,我們注意到
$$
P(X\in A)=P(X\in A\cap X=Y)+\underbrace{P(X\in A\cap X\neq Y)}_{=0}=P(X\in A\cap X=Y)
$$ 同理我們亦可觀察 $P(Y\in A)=P(Y\in A\cap X=Y)$。注意到若我們可證明 $$P(X\in A\cap X=Y) = P(Y\in A\cap X=Y) \;\;\;\;\; (*)$$則 $$P(X\in A)=P(X\in A\cap X=Y)=P(Y\in A\cap X=Y)=P(Y\in A)$$即為所求。

現在我們回頭證明等式$(*)$。我們僅須證明下列事件集合等式關係成立 $$\{X\in A\cap X=Y\} = \{Y\in A\cap X=Y\} $$即可。首先證明 $\{X\in A\cap X=Y\} \subset \{Y\in A\cap X=Y\} $: 令 $\omega \in \{ X \in A\cap X=Y\}$ 即表明 $X(\omega) \in A$ 且 $X(\omega) = Y(\omega)$。 故我們可推得 $Y(\omega) \in A$ 故此,$\omega \in \{Y \in A\cap X=Y\}$。亦即$$\{X\in A\cap X=Y\} \subset \{Y\in A\cap X=Y\} $$ 同理不難證得 $\{X\in A\cap X=Y\} \supset \{Y\in A\cap X=Y\} $。故我們得到 $\{X\in A\cap X=Y\} = \{Y\in A\cap X=Y\} $至此證明完畢。$\square$


上述 Claim 的反面論述並不成立。以下我們給個反例:考慮均勻分布 $X$為隨機變數服從均勻分布 $U[-1,1]$ 現在取另一隨機變數 $Y:=-X$則 $Y$亦為在 $[-1,1]$上均勻分布,亦即 $X$與 $Y$具有同分布。然而
$$P(X = Y) = 0$$

留言

  1. 教授, 有個問題想請教. X(\omega) \in A 要怎麼解讀?
    我的理解 X 是一個從\Omega 到其他空間(ex: R)的mapping, A 是一個在\Omega 上的subset

    回覆刪除

張貼留言

這個網誌中的熱門文章

[數學分析] 什麼是若且唯若 "if and only if"

數學上的 if and only if  ( 此文不討論邏輯學中的 if and only if,只討論數學上的 if and only if。) 中文翻譯叫做  若且唯若 (or 當且僅當) , 記得當初剛接觸這個詞彙的時候,我是完全不明白到底是甚麼意思,查了翻譯也是愛莫能助,畢竟有翻跟沒翻一樣,都是有看沒有懂。 在數學上如果看到 if and only if  這類的句子,其實是表示一種 雙條件句 ,通常可以直接將其視為" 定義(Definition)" 待之,今天要分享的是這樣的一個句子如何用比較直觀的方法去看他 假設我們現在有 兩個邏輯陳述句 A 與  B. 注意到,在此我們不必考慮這兩個陳述句到底是什麼,想表達什麼,或者到底是否為真(true),這些都不重要。只要知道是兩個陳述即可。 現在,考慮新的陳述:  "A if and only if B" 好了,現在主角登場,我們可以怎麼看待這個句子呢? 事實上我們可以很直覺的把這句子拆成兩部分看待,也就是 "( A if B ) and ( A only if B )" 那麼先針對第一個部分  A if B  來看, 其實這句就是說  if B then A, 更直白一點就是 "if B is true, then A is also true".  在數學上等價可以寫為 "B implies A" .  或者更常用一個箭頭符號來表示 "B $\Rightarrow$  A"  現在針對第二個部分  A only if B 此句意指  "If B is not true, then A is also not true". 所以如果已知 A is true,  那麼按照上句不難推得 B is also true 也就是說  A only if B  等價為 "If A is true then B is also true". 同樣,也可以寫作   "A implies B"   或者用箭頭表示  "A   $\Rightarrow$     B".

[數學分析] 淺談各種基本範數 (Norm)

這次要介紹的是數學上一個重要的概念: Norm: 一般翻譯成 範數 (在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 Norm 想成長度就好 (事實上norm是長度的抽象推廣), 也許讀者會認為好端端的長度不用,為何又要發明一個 norm 來自討苦吃?? 既抽象又艱澀。 事實上想法是這樣的: 比如說現在想要比較兩個數字 $3$ , $5$ 之間的大小,則我們可以馬上知道 $ 3 < 5 $;同樣的,如果再考慮小數與無理數如 $1.8753$ 與 $\pi$,我們仍然可以比較大小 $1.8753 < \pi = 3.1415...$ 故可以發現我們有辦法對 "純量" 做明確的比大小,WHY? 因為前述例子中 $3$, $5$, $1.8753$ or $\pi$ 其各自的大小有辦法被 "measure "! 但是如果是現在考慮的是一組數字 我們如何去measure 其大小呢?? 比如說 \[x:=[1, -2, 0.1, 0 ]^T \]上式的大小該是多少? 是 $1$? $-2$? $0.1$??? 再者如果更過分一點,我們考慮一個矩陣 \[A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 3&4 \end{array}} \right] \],想要知道這個矩陣的大小又該怎麼辦?? 是 $1$ ? $2$ 還是 $4$ ?..其實現階段我們說不清楚。 也正是如此,可以發現我們確實需要新的 "長度" 的定義來幫助我們如何去 measure 矩陣/向量/甚至是函數的大小。 故此,我們首先定義甚麼是Norm,(也就是把 "長度" or "大小" 的本質抽離出來) ================== Definition: Norm 考慮 $V$ 為一個向量空間(Vector space),則我們說  Norm 為一個函數 $||\cdot|| : V \rightarrow \mathbb{R}$ 且滿足下列性質