8/11/2024

[數學分析] 連續函數性質與sublevel set 關係

 考慮 $f: X \to \mathbb{R}$ 為連續函數,則其sublevel set $$L_s := \{x \in X: f(x) \leq s\}$$ 為閉集(closed set)。

Proof.

首先注意到 $(-\infty, s]$ 為在 $\mathbb{R}$ 的 closed set (why?),並且注意到 $f$ 的 sublevel set 可由連續函數 $f$ 的像原(preimage) 表示,亦即, $$f^{-1}((-\infty, s]) = \{x \in X: f(x) \leq s\}$$ 由連續函數等價定理:函數 $f$ 為連續若且唯若對於 $\mathbb{R} $ 中任意 closed set $A$ ,其 $f^{-1}(A) $ 為 closed。現令 $A:=(-\infty, s]$,且 $f$ 為連續,故 $L_s = f^{-1}((-\infty, s])$ 為 closed set。

沒有留言:

張貼留言

[機率論] 三角陣列

在機率論中,我們常看到的是單一指標序列:$ \{X_n\}_{n=1}^\infty := (X_1, X_2, \dots,) $ 比如說 iid 序列或者至少定義在同一個機率空間 $(\Omega, \mathcal{F}, P)$上的序列。 此時只有一個指標 $n$,而...