顯示具有 Greek Letters 標籤的文章。 顯示所有文章
顯示具有 Greek Letters 標籤的文章。 顯示所有文章

5/11/2011

[衍生商品] 希臘值與動態避險 (2) - Gamma and Gamma Neutrality


延續上篇 [衍生商品] 希臘值與動態避險 (1)-Delta Hedging Example ,這次要介紹 希臘值 Gamma: $\Gamma$,此參數定義為
\[
\Gamma := \frac{\partial^2 f}{\partial S^2}
\] 亦即為標的資產價格 $S$ 的二次偏導數。

注意到之前我們定義過 $\Delta := \frac{\partial f}{\partial S}$,故 $\Gamma$ 可視為選擇權 $\Delta $ 的變化 與 標的資產價格 $S$ 變化的比率。

Comment
1. 當 $\Gamma $ 很小的時候,表示 $\Delta$ 變化緩慢 (stable $\Delta$) (亦即對標的資產價格變動不敏感),故此時對於 $\Delta$-Hedging 所需的 Rebalance 不需太過頻繁。但是若 $\Gamma$ 很大的時候,表示 $\Delta$ 變化劇烈,亦即對標的資產價格變動非常敏感,故此時 $\Delta$-Hedging 需要頻繁的做 Rebalance 來確保 Delta-Neutral ($\Delta =0$)。

2. 如果考慮的是一個 選擇權交易組合的 $\Gamma$,則其定義為
\[
\Gamma := \frac{\partial^2 \Pi}{\partial S^2}
\] 其中 $\Pi$ 為選擇權交易投資組合的價格。

假定且我們假設 標的資產的波動度為 Constant,則投資組合的價格為資產價格 $S$ 與 時間 $t$ 的函數,亦即我們可對 $\Delta \Pi$ 做泰勒展開求資產價格的變化
\[
\small{\Delta \Pi  = \underbrace {\frac{{\partial \Pi }}{{\partial S}}}_\Delta \Delta S + \underbrace {\frac{{\partial \Pi }}{{\partial t}}}_\Theta \Delta t + \frac{1}{2}\underbrace {\frac{{{\partial ^2}\Pi }}{{\partial {S^2}}}}_\Gamma \Delta {S^2} + \frac{1}{2}\frac{{{\partial ^2}\Pi }}{{\partial {t^2}}}\Delta {t^2} + \frac{1}{2}\frac{{{\partial ^2}\Pi }}{{\partial S\partial t}}\Delta S\Delta t + ...
}\]其中 $\Delta \Pi$ 與 $\Delta S$ 為 很小的時間區間 $\Delta t$ 內投資組合的價格與股票價格的變化。

現在如果此 投資組合為 Delta-Neutral,亦即 $\Delta=0$,且我們忽略高階項的效果,則上述泰勒展開可改寫為
\[\Delta \Pi  \approx \Theta \Delta t + \frac{1}{2}\Gamma \Delta {S^2} \ \ \ \ (*)
\]
下圖展示了 Delta Neutral 的投資組合 $\Delta \Pi$ 與 $\Delta S$的關係。


上圖顯示了如果是 Long option (則此時標的股價上升則投資組合價格跟著上升),則 $\Gamma >0, \Theta <0$
如果是 Short option ,則 $\Gamma <0, \Theta >0$

3. 對於 European Call option 與 European Put option,B-S formula 可直接求得 $\Gamma$ 的解析式如下:
\[
\Gamma  = \frac{{N'\left( {{d_1}} \right){e^{ - qT}}}}{{{S_0}\sigma \sqrt T }}
\] 其中 $N'(\cdot)$ 為 Standard Normal density function。
\[N'\left( {{d_1}} \right) = \frac{1}{{\sqrt {2\pi } }}{e^{\frac{{ - d_1^2}}{2}}}\]

現在我們看個例子:

=============================

Example (Gamma Neutrality)
假定某標的資產投資組合為 Delta Neutral,其對應的 Gamma 值為 $-10000$,現在假設標的資產價格 $\Delta S$ 在短時間內變化為 $+2$ 或者 $-2$ (假設短時間 $\Delta t \approx 0$),則交易組合的價值變動為何?

============================

Solution
由於此投資組合已經為 Delta Neutral,故 $\Delta =0$,我們可利用之前推導的結果: $(*)$
\[\begin{array}{l}
\Delta \Pi  \approx \Theta \Delta t + \frac{1}{2}\Gamma \Delta {S^2}\\
 \Rightarrow \Delta \Pi  \approx 0 + \frac{1}{2}\left( { - 10000} \right){\left( 2 \right)^2} = -20000
\end{array}\]亦即交易組合價值下跌 $20000$ 元。 $\square$

再者我們介紹如何使投資組合進一步具備 Gamma Neutral 的特性

Gamma Hedging and Gamma Neutral
假定一個 Delta Neutral 的投資組合的Gamma 值為 $\Gamma$,而某交易所的交易選擇權的Gamma 值為 $\Gamma_T$,現若決定將 $w_T$ 數量的選擇權加入到原本的投資組合中,則新的投資組合的 Gamma 值為 $\Gamma^*$
\[
\Gamma^* =\Gamma + w_T \Gamma_T
\]故如果我們要使投資組合為 Gamma-Neutral,亦即 $ \Gamma^* =0$則我們需用
\[\begin{array}{l}
{\Gamma ^*} = \Gamma  + {w_T}{\Gamma _T} = 0\\
 \Rightarrow {w_T} =  - \frac{\Gamma }{{{\Gamma _T}}}
\end{array}
\] 亦即須增加/減少 $w_T$ 個選擇權,但注意到當我們達成 Gamma Neutral 的時候,很可能會變動到原本的 Delta,故我們需回頭調整 Delta 來保證薪投資組合除了 Gamma Netural 之外亦維持 Delta Netural。

以下我們看個例子如何同時達成 Gamma 與 Delta Neutral。

Example: Delta & Gamma Neutrality
考慮一投資組合為 Delta Neutral,且其 $\Gamma = -3000$,而對應於交易所交易的選擇權的 $\Delta = 0.62, \Gamma=1.50$,試建立一個新的 投資組合使得其 Gamma 與 Delta Neutral

Solution
STEP1 : 首先對付 Gamma
令 $w_T$ 為需交易的選擇權數量。則我們要 $\Gamma^*=\Gamma  + {w_T}{\Gamma _T} = 0$故
\[
-3000 + w_T 1.50 = 0\\
\Rightarrow {\rm{ }}{w_T}{\rm{ }} = 2000
\] 故需買入 2000 份選擇權來達成 Gamma Neutral。

STEP2: 找出 Gamma Hedging 之後的 Delta 為多少?
再者由於我們對原本 Delta Neutral 的投資組合中 加入了 2000份的選擇權,故 Delta 被更動,不再是 Delta Neutral。新的 Delta 為
\[
2000 \times 0.62 = 1240
\]亦即透過 Gamma Hedging 之後我們新的投資組合多了 $1240 $ 的 Delta

STEP3 : 對付 Delta :
由於我們多了 1240 的 Delta ,故需賣出1240股達成 $\Delta$ hedging。
(注意到賣出標的股票並不會影響 $\Gamma$ (WHY?! 因為 $\frac{\partial^2}{\partial S^2} S =0$ ) $\square$


接著我們看個稍微複雜一點的例子:

Example (Delta/Gamma Neutral via Put and Call combination )
假定某公司股價最近經歷一連串的下跌,投資者預期該公司股價將持續下跌,故決定購買 $100$ 份  執行價格為 $20$,到期時間為三個月,價格 為 0.75 元的 European Put option 來獲利。現考慮市場條件為 無風險利率 $4 \%$,當前股價為 $22$,股價波動度為 $39 \%$,且該公司不配發股息。

(a) 如果當前股價突然上漲到 $25$ 元/ 每股,則投資人所購入的 Put option 策略 賺/賠 多少?

(b) 現在假設投資者採用 Delta Hedging (在股價原本為 $22$ 的時候) 來保護其購買的 Put option 策略,那麼其淨利為何?

(c) 假設投資人決定再使用執行價格為 $20$ 到期時間為三個月的 European Call option 來達成 Delta-Gamma Neutral  (在股價原本為 $22$ 的時候)。試求投資人應如何達成此策略? 其淨利為何?

Solution (a)
改寫已知資訊如下:
\[
K=20, T=3/12, P_{S=0.22}=0.75, r=0.04, S_0=22, \sigma=0.39, q=0
\] 由於股價上漲到 $25$,故連帶的 Put option 價格也會有所變動。
透過 B-S formula 計算 股價上漲到 $25$ 元後的 Put option 價格
首先計算
\[\left\{ {\begin{array}{*{20}{l}}
{{d_1} = \frac{{\ln \left( {{S_0}/K} \right) + \left( {r - q + {\sigma ^2}/2} \right)T}}{{\sigma \sqrt T }} = 1.2931}\\
{{d_2} = {d_1} - \sigma \sqrt T {\rm{ = 1}}{\rm{.0981}}}
\end{array}} \right.\]
帶入 B-S formula:
\[\begin{array}{l}
P = K{e^{ - rT}}N\left( { - {d_2}} \right) - S{e^{ - qT}}N\left( { - {d_1}} \right)\\
 \Rightarrow P = 20{e^{ - 0.04 \times \frac{3}{{12}}}}N\left( { - 1.0981} \right) - 25N\left( { - 1.2931} \right) = 0.2488
\end{array}
\]亦即股價上漲後的 Put option price 為 $P_{S=25} = 0.2448$ 元

故可知投資人的 Put option 投資策略 淨利為
\[ (0.2448-0.75)100=-50.52 \]

Solution (b)
現在由於投資人要進行 Delta-Hedging,故我們首先必須求得 Delta 值,由題意可知我們需計算上漲前的 Delta: $\Delta_{S=22, put}$
又由於 Put option 的 Delta 為 $\Delta_{S=22, put}=-e^{-qT} N(-d_1)$,故我們計算 $d_1$ (注意! 此時的 $d_1$ 為股價上漲前的,不可直接使用 part (a) 所計算出來的結果)
\[{d_1} = \frac{{\ln \left( {22/20} \right) + \left( {0.04 - 0 + \frac{{{{\left( {0.39} \right)}^2}}}{2}} \right)\frac{3}{{12}}}}{{0.39\sqrt {3/12} }} = 0.6376
\] 故
\[
\Delta_{S=22, put}=-e^{-qT} N(-d_1) = -0.2619
\] 又由於投資人購買了 100份 Put option,故此投資組合的總 $\Delta$ 為
\[
\Delta = -0.2619 \times 100 = -26.19
\] 所以若欲獲得 Delta-Neutralality,則必須 購入 26.19 股股票。


Solution (c)
現在由於投資人要進行 Delta-Gamma Hedging,故我們首先必須先對付 Gamma:
也就是要先求得 Gamma 值,由題意可知我們需計算上漲前的 Gamma :
\[\Gamma  = \frac{{N'\left( {{d_1}} \right){e^{ - qT}}}}{{{S_0}\sigma \sqrt T }}\]
其中
\[N'\left( {{d_1}} \right) = \frac{1}{{\sqrt {2\pi } }}{e^{\frac{{ - d_1^2}}{2}}} = \frac{1}{{\sqrt {2\pi } }}{e^{\frac{{ - \left( {0.6379} \right)_{}^2}}{2}}} = 0.3255\]
將上式代入 Gamma 可得
\[\Gamma  = \frac{{N'\left( {{d_1}} \right){e^{ - qT}}}}{{{S_0}\sigma \sqrt T }} = \frac{{0.3255}}{{22\left( {0.39} \right)\sqrt {3/12} }} = 0.0759
\]注意到上式的 Gamma for put $=$ Gamma for call;亦即 $\Gamma_{call} = \Gamma_{put}$

現在我們考慮加入 $w_T$ 份 Call option,其對應的 $\Gamma_{call} = \Gamma_{put} = 0.0759$,故總 Gamma 為 原本購買 100 份 Put option 的 Gamma 加上 $w_T$ 份 Call option 的 Gamma;又因為我們要達成 Gamma Neutral,故總 Gamma 必須為零;故我們可求解到底需要多少份 call option:
\[\begin{array}{l}
\Gamma  = 0.0759 \times 100 + {w_T}0.0759 = 0\\
 \Rightarrow {w_T} =  - 100
\end{array}
\] 亦即須要賣出 100 份 Call option 即可達成 Gamma Neutral。

但由於我們更動了 Gamma,故 Delta 亦會連帶受到更動;其更動後 (賣出 100 份 Call ) 的 Delta 為
\[
\Delta = -100 e^{-qT} N(d_1) = -100 N(0.6379) = -73.82
\] 故我們需要購入 73.82 股股票 ,即可達成 Delta-Neutral。

總結 Delta-Gamma Hedging 策略 如下:
買入 100 份 Put option (原始策略)
購入 26.19 股股票 (Delta-Neutral)

賣出 100 份 Call option (透過 Call option 達成 Gamma Neutral)
購入 73.82 份 股票 (修正 Gamma Neutral所造成的 Delta 變動)

故總計為
買入 100份 Put
賣出 100份 Call
購入 26.19+73.82=100 股股票

其淨利為: (股價為 $22$ 時 Call option 價格為 $2.9530$;股價上漲到 $25$ 元的 Call option 價格為 5.4438 (此兩數值可透過 B-S model 計算而得或者 Put-call parity))
\[\underbrace {(25 - 22) \times 100}_{Long\begin{array}{*{20}{c}}
{}
\end{array}stock} + \underbrace {\left( {0.2448 - 0.75} \right) \times 100}_{Long\begin{array}{*{20}{c}}
{}
\end{array}put} - \underbrace {\left( {5.4438 - 2.9530} \right) \times 100}_{Short\begin{array}{*{20}{c}}
{}
\end{array}Call} = 0.4\]




ref: John C. Hull, Options, Futures and Other Derivatives 7th.

[衍生商品] 希臘值與動態避險 (1)-Delta Hedging Example

回憶前篇 [衍生商品] 希臘值與動態避險 (0) - Delta and Delta Neutral ,這次要介紹如何利用 $\Delta$ 進行動態避險。

回憶 $\Delta$ 定義如下:
\[
\Delta := \frac{\partial f}{ \partial S}
\]亦即表示為 選擇權價格 $f$ 對 股價 $S$ 的變化率。(由於其為一階導數,故為斜率)

現在來看個例子:

Example 1 : (Delta Hedging)

如果 $\Delta = 0.6$ 則表示當股價 些微變化 的時候,對應的選擇權價格變化大約是股價變化值 的 $60 \%$。
下圖顯示了一組 $\Delta$ 值在某時刻的例子:


考慮上圖,假設股價為 $\$ 100 $,Call option 價格為 $ c= \$ 10$,現在考慮某金融機構的交易員賣出了 $20$ 份 Call option (一份選擇權對應其持有者可以有權購買 $100$ 股,亦即 $20$ 份call option 共 $x= 20 \times 100 = 2000$ 股)。此時如果不進行避險,則當股價上升時,該交易員會暴露風險之中:

簡單的說,現在有兩個人物:
  1. 賣出 call option 的交易員
  2. 跟交易員 購買 call option 的客戶
此時客戶的 $\Delta_{Customer} =0.6$ (因為購入call option,當股價上升對顧客有利,此時 $\Delta >0$)
而交易員的 $\Delta_{trader} = -0.6$, (由於交易員是 "賣出" 選擇權,故當股票價格上升,則選擇權會被執行,此情形時將對交易員產生風險。故此 $\Delta$ 對 交易員而言是負值)

現在,站在交易員的觀點,如果不進行避險,則交易員本身的潛在損失為
\[
-0.6 \times 2000 =-1200 \ \text{shares}
\]
我們必須消除賣出 Call option所帶來的 風險,此時交易員可進行 $\Delta$-Hedging  來補足缺少的 $1200$ 股 股票。:

由於交易員是 "賣出" Call option ,故避險方法便是進行反向操作,也就是可以透過 "買入" 一定量股票來抵銷當 股價上升時,Call option 被執行所帶來的損失風險,故
購買 $\Delta \times x = 0.6 \times 2000 =1200$ 股股票

此時如果 股票上漲 $1$ 元,則交易員 買入的股票會上升 $1200$ 元 (賺 $1200$ 元),而由 圖中 $\Delta =0.6$ 可知 Call option 會上漲 $0.6$ 元,故如果此時 Call option 被持有者執行,則交易員會損失 $0.6 \times 2000 = \$ 1200$ 此數值剛好會跟交易員進行避險時候買入的股票所賺取的 $1200$ 抵銷。

相反的如果股票下跌 $1$元,則交易員 買入的股票會下跌 $1200$ 元 (損失 $1200$ 元),而由圖中 $\Delta =0.6$ 可知 Call option 亦會下跌 $0.6$ 元,此時選擇權不會被執行,則交易員因為賣出選擇權 會賺得 $ \$ 1200$ 此數值剛好會跟交易員進行避險時候賣出的股票所損失的 $1200$ 抵銷。 $\square$

Comment:
1. 注意到上述例子中,由於 $\Delta$ 會變動,故抵銷後的 $\Delta$-Hedging 只能維持一段極短時間,也就是需要不斷的調整 $\Delta$-Hedging ,此稱為 Rebalancing。一般而言,隨時間不斷調整的 避險策略 統稱為 $Dynamic Hedging$,這邊展示的是利用 $\Delta$ 進行避險

2. $\Delta$ 在 Nondividend Black-Scholes formula 中等價為 $N(d_1)$;亦即
\[
\Delta := \frac{{\partial f}}{{\partial S}} = N\left( {{d_1}} \right)
\] 其中 $N(\cdot)$ 為 Cumulative normal distribution。

3. $\Delta$ -Hedging 並非 Perfect Hedging。(WHY!? 理由同 comment 1 )

Example 2 (Delta-Hedging )
考慮 造市商(market-maker) 賣出 $K=40$ 的 call-option on 100 股 股票,且
$ \sigma=0.3$, $r=0.08 $ 連續複利
現在考慮 Day 0,$S=\$40$, $c =\$2.78$, $\Delta=0.58$
如何進行 $\Delta$-hedging?
How much cost you to create such a $\Delta$-hedging ?

現在再考慮 Day 1,$S=40.5, c= \$ 3.06$, $\Delta=0.61$
如何進行 $\Delta$-hedging?
Overnight Mark-to-market profit/loss ?

現在再考慮 Day 2,$S=39.25, c= \$2.328$, $\Delta=0.53$
Overnight Mark-to-market profit/loss ?

Solution:
考慮 時刻為 DAY 0
首先考慮不進行避險情況,market-maker 本身為 $-\Delta \times 100 = -58$,故需要補足此 $58$ 股股票,亦即需要購買 $58$ 股 股票即可達成 DAY0 $\Delta$-Hedging。

接著我們可以計算要花多少錢才可以建構此避險策略: ( 賣出選擇權 與 購入 股票之後的花費):
\[
58 \times 40 - 2.78 \times 100 = \$ 2042
\]故我們知道建構此避險策略需要花費 $\$ 2042$,故我們可借入此金額並考慮利率,亦即我們借入 $2042 \times e^{8\%/365} = 2042.45$,故利息為 $2042.45-2042=\$ 0.45$。現在總結 Day 0 如下:

購入 $58$ 股股票 達成避險,然後我們需要借入 $2042$  元 並支付利息 $0.45$ 來達成此避險策略。

接著考慮 DAY 1
此時相關資訊(股價、選擇權價格、Delta)變動為 $S=40.5, c= \$ 3.06$, $\Delta=0.61$

我們可以先行計算 Overnight mark-market profits/loss :
\[
(40.5-40) \cdot (58) - (3.06-2.78) \cdot (100) - 0.45 = 0.55
\] 由於此時 $\Delta =0.61$ 已經改變,故我們需要重新調整股票數來消除風險。
首先考慮不進行避險情況,market-maker 本身為 $-\Delta \times 100 = -61$,故需要補足此 $61$ 股股票,但由於在 DAY0 已經購入 $58$ 股,故我們只需再購買 $61-58 = 3$ 股 股票即可達成 DAY1 $\Delta$-Hedging。

現在我們來計算達成此避險策略所需的花費 (DAY1 total cost ):
\[
61 \times 40.5 - 3.06 \times 100 = 2164.5
\] 同樣地,我們可以得知需要借入 $2164.5$ 元 且須支付利息為 $2164.5e^{8\%/365} - 2164.5=0.47$

考慮 DAY2 Mark-market Profits/loss:
此時相關資訊(股價、選擇權價格、Delta)變動為 $S=39.25, c= \$2.328$, $\Delta=0.53$
\[
 (39.25-40.5) \cdot 61 - (2.328-3.06) \cdot 100 - 0.47 = -3.52 \ \ \ \ \square
\]


ref: John C. Hull, Options, Futures and Other Derivatives 7th.

4/28/2011

[衍生商品] 希臘值與動態避險 (0) - Delta and Delta Neutral

這次要介紹的是財務中的 希臘值 Greek Letters:
\[ \Delta, \Gamma, \Theta, \rho, \nu
\],上述的這些希臘字母被用作財務中衍生商品的 避險 (Hedging) 的指標。

那麼問題是這些希臘字母到底如何跟避險扯上關係呢? 這必須要回歸 Black-Scholes Formula:
\[\left\{ \begin{array}{l}
C = S{e^{ - qT}}N \left( {{d_1}} \right) - K{e^{ - rT}}N \left( {{d_2}} \right)\\
P = K{e^{ - r(T)}}N \left( { - {d_2}} \right) - S{e^{ - qT}}N \left( { - {d_1}} \right)
\end{array} \right.\]
其中 $C$ 為 Call option 價格,$P$ 為 Put Option 價格, $N(\cdot)$ 為 Standard Normal Cumulative distribution function (CDF),且\[\left\{ \begin{array}{l}
{d_1} = \frac{{\ln (S/K) + (r - q + \frac{1}{2}{\sigma ^2})(T)}}{{\sigma \sqrt T }}\\
{d_2} = {d_1} - \sigma \sqrt T
\end{array} \right.\]

觀察上述 Black-Scholes Formula,我們知道 選擇權價格 $C, P$ 可表為一個多變數的函數
\[
f(S,K,T,r,q,\sigma)
\]其中 $S$ 為現時股價,$K$ 為執行價格, $T$ 為到期時間, $r$ 為連續複利的無風險年利率, $q$ 為連續複利的年股息,$\sigma$ 為 波動度。


想法:對於 B-S formula 所求得的 $f(S,K,T,r,q,\sigma)$ 對特定參數的變動,我們用一個特定希臘字母來表示他,這些變動用來測量不同的風險:

這邊先介紹 $\Delta$
\[
\Delta := \frac{\partial f}{ \partial S}
\]亦即表示為選擇權價格對股價的變化率。(由於其為一階導數,故為斜率)

回憶先前介紹過,
對於 Long Call Position: $0 \leq \Delta \leq 1$ (Short call 則對左式同取負號)
對於 Long Put Position : $-1 \leq \Delta \leq 0$ (Short put 則對左式同取負號)

上述結果可繪製如下圖:




Comment: 
1. 如果 $\Delta =0$,則表示股票些微變化 不影響 選擇權價格。且此狀態稱為 Delta Neutral
2. $\Delta$ 在 Black-Scholes Call opton formula 中等價為 $e^{-qT}N(d_1)$;亦即
\[
\Delta := \frac{{\partial f}}{{\partial S}} = e^{-qT}N\left( {{d_1}} \right)
\] 其中 $N(\cdot)$ 為 Cumulative normal distribution。
3. 關於 Put Option 與 Call Option 的 $\Delta$ 值之間存在一固定關係,我們將此關係寫成下面的 Claim :

Claim:
對於 Call option 與 Put Option 的 $\Delta$ 有如下關係:
\[
\Delta_c - \Delta_p = e^{-qT}
\]Proof
上述關係可以很簡潔的利用 Put-Call Parity 來證明,現在回憶 Put-Call Parity 如下:
\[
C-P = Se^{-qT} - Ke^{-rT}
\]對上式兩邊取對 $S$ 偏導數 $\frac{{\partial }}{{\partial {\rm{S}}}}$:
\[\begin{array}{l}
C - P = S{e^{ - qT}} - K{e^{ - rT}}\\
 \Rightarrow \underbrace {\frac{{\partial C}}{{\partial S}}}_{{\Delta _c}} - \underbrace {\frac{{\partial P}}{{\partial S}}}_{{\Delta _p}} = {e^{ - qT}}\\
 \Rightarrow {\Delta _c} - {\Delta _p} = {e^{ - qT}}
\end{array}\] $\square$


投資組合 的 Delta 與 Superposition (Delta of Portfolio)
現在考慮 $\Pi $ 為投資組合的價值,則對單一資產 (價格為 $S$) 的 選擇權或其他衍生商品所組成的投資組合之 $\Delta$ 定義為
\[
\frac{\partial \Pi}{\partial S}
\] 投資組合的 $\Delta$ 值可由投資組合中,可先分別計算各自單一的 Options 的 $\Delta$ 值在做線性組合:亦即若考慮投資組合由數量為 $w_i$ 的選擇權所組合而成 $(1 \leq i \leq n)$ 且對應地 $i$ 個 Option 的 $\Delta$ 值為 $\Delta_i$,則此投資組合的總 $\Delta$ 值為
\[
\Delta = \displaystyle \sum_{i=1}^{n} w_i \Delta_i \ \ \ \ (*)
\]

現在我們看個例子:

Example
考慮某金融機構持有下列三種某標的資產股票:
  1. Long 100,000 call options ,執行價格為 $K=55$,到期時間 $T=3$ 個月,$\Delta=0.533$
  2. Short 200,000 Call options﹑,執行價格為 $K=56$,到期時間 $T=5$ 個月,$\Delta=0.468$
  3. Short 50,000 Call options﹑,執行價格為 $K=56$,到期時間 $T=2$ 個月,$\Delta=-0.508$

則此金融機構的總 $\Delta$ 可由 $(*)$ 計算而得
\[
\Delta = 100,000 \times 0.533 - 200,000 \times 0.468 - 50,000 \times (-0.508) = -14,900
\]亦即,如果要達到使此投資組合為 Delta Neutral,則必須 購入 $14,900$ 股 股票。

ref: John C. Hull, Options, Futures and Other Derivatives 7th.

[測度論] 期望值下確界與函數值下確界之恆等式

  Claim: 令 $(X, \mathcal{F})$ 為可測空間。令 $g: X \to \mathbb{R}$ 為可測函數,則 $$\inf_{\mathbb{P} \in \mathcal{P}(X)} \int_X g(x) d\mathbb{P}(x) = \in...