跳到主要內容

[數學分析] 逐點收斂與均勻收斂(3) - Differentiation property

如果我們手邊有一個 均勻收斂的 函數 sequence $\{f_n \}$ 且假設此數列可微,我們想知道均勻收斂是否能給我們一些關於此函數sequence 微分 $\{ f_n' \}$ 的一些關聯?

首先看個例子:

Example:

\[
f_n(x) := \frac{\sin nx}{\sqrt{n}}, \;\; (x \in \mathbb{R}, \;n=1,2,3,...)
\]試回答下列問題:
1. 函數是否逐點收斂(converges pointwise)?
2. 是否均勻收斂(converges uniformly)?
3. 此函數sequence 導數 $f_n'(x)$ 為何?
4. 此函數sequence 的導數  $\{ f_n'\}$是否逐點收斂?
5. 此函數sequence 的導數  $\{ f_n'\}$是否均勻收斂?
Solution
1. 首先檢驗是否逐點收斂
給定 $x \in \mathbb{R}$,我們可知道當 $n \rightarrow \infty$ 函數 sequence $\{f_n \}$為
\[\mathop {\lim }\limits_{n \to \infty } {f_n}\left( x \right) = \mathop {\lim }\limits_{n \to \infty } \frac{{\sin nx}}{{\sqrt n }} = 0
\]亦即此 $\{f_n \}$ converges pointwise 到 $0$

2. 現在我們檢驗其是否為均勻收斂,由均勻收斂的 sup-norm 定義,我們可檢驗其 sup-norm 看是否收斂到 $0$;亦即檢驗
\[\left\| {{f_n} - f} \right\| = \mathop {\sup_{x \in \mathbb{R}} } \left| {\frac{{\sin nx}}{{\sqrt n }} - 0} \right| = \mathop {\sup_{x \in \mathbb{R}} } \left| {\frac{{\sin nx}}{{\sqrt n }}} \right| \le \frac{1}{{\sqrt n }}
\]故讓 $n \rightarrow \infty$可得
\[\mathop {\lim }\limits_{n \to \infty } \left\| {{f_n} - f} \right\| = 0\]

3. 此函數 sequence 導數為
\[{f_n}'\left( x \right) = \frac{1}{{\sqrt n }}n\cos nx = \sqrt n \cos nx\]

4. & 5. 此函數 sequence 的導數是否逐點收斂?
由結果 3 可知函數 sequence 的導數為 $\sqrt n \cos nx$ 此函數為在 $-1$ 與 $1$ 之間上下震盪的 cosine ,故若我們讓 $n \rightarrow \infty$ 皆不(逐點)收斂。既然此函數導數不收斂故必定不為均勻收斂。$\square$


故從上例可看出儘管原函數 sequence 具備均勻收斂,仍沒有辦法保證其導數sequence $\{ f_n'\}$依然均勻收斂。那麼問題變成 我們想知道 導數 sequence 與 原函數 sequence 之間的關係

不過我們在介紹此結果之前,我們需要一些事先工具:
===================
Mean Value Theorem 
設 $f: [a,b] \rightarrow \mathbb{R}$ 為連續函數 且 $f$ 在 $(a,b)$ 上可微。則 存在 $x \in (a,b)$ 使得
\[
|f(b) - f(a)| \le (b-a)|f'(x)|
\]===================
Proof: omitted.

====================
Theorem: Uniform Convergence Preserves Continuity
假設 $f_n \rightarrow f$ 均勻收斂在 $E \subset X$,令 $x$ 為 $E$ 上的 limit point,且假設 $\lim_{t \rightarrow x} f_n(t) = A_n(x)$ 對 $n = 1,2,3,...$則
1. $\{A_n \}$ 收斂
2. $\displaystyle \lim_{t \rightarrow x}f(t) = \displaystyle \lim_{n \rightarrow \infty} A_n(x)$
====================
Proof: omitted.


我們將此結果記做以下定理:
=======================
Theorem: Uniform Convergence and Differentiation Property
假設 $\{ f_n\}$ 為在封閉區間 $[a,b]$上可微的函數 sequence,且存在某點 $x_0 \in [a,b]$ 使得 sequence $\{ f_n(x_0)\}$ 收斂。現若 函數導數sequence $\{ f_n'\}$ 在 $[a,b]$ 上均勻收斂,則
1. 原函數sequence  $\{f_n \}$ 在 $[a,b]$上均勻收斂到某函數 $f$ 且
2. 對任意 $x \in [a,b]$,我們有
\[f'\left( x \right) = \mathop {\lim }\limits_{n \to \infty } {f_n}'\left( x \right)\]
=======================
Proof
我們先證 函數sequence  $\{f_n \}$ 在 $[a,b]$上均勻收斂到某函數 $f$ (但不知道此函數 $f$ 是否存在,我們必須現證明此函數收斂才可說 $f$ 存在),故給定 $\varepsilon >0$ 我們要證明: 存在 $N$ 使得 $n ,m> N$ 與 $x \in [a,b]$,
\[
|f_n(x) - f_m(x)| < \varepsilon \ \ \ \ (\star)
\](亦即使用 Cauchy criterion 判斷均勻收斂)。

注意到我們已知 "存在某點 $x_0 \in [a,b]$ 使得 sequence $\{ f_n(x_0)\}$ 收斂",故 $\{f_n \}$為 Cauchy,亦即存在 $N$ 使得 $n,m > N$
\[
|f_n(x_0) - f_m(x_0)| < \varepsilon \ \ \ \ (*)
\]且又知道 "函數導數sequence $\{ f_n'\}$ 在 $[a,b]$ 上均勻收斂",故我們直接取前面 Cauchy 要求的 $N$ 使得
\[
|f_n'(x) - f'(x)| < \varepsilon/(b-a)
\]觀察上式,若 $n > N$ 則我們有 $|f_n'(x) - f'(x)| < \varepsilon/(b-a)$  且由於 "  $\{ f_n\}$ 為在封閉區間 $[a,b]$上可微的函數 sequence",我們知道 $f_n - f_m$ 亦為可微函數,故對 $f_n - f_m$ 使用 Mean Value Theorem 可巧妙整合 $(*)$,亦即我們有 對任意 $x, t \in [a,b]$ , $n,m >N$ 則
\[\begin{array}{l}
|\left( {{f_n}(x) - {f_m}(x)} \right) - \left( {{f_n}(t) - {f_m}(t)} \right)| \le |x - t| \cdot |{f_n}'(x) - {f_m}'(x)|\\
 \Rightarrow |\left( {{f_n}(x) - {f_m}(x)} \right) - \left( {{f_n}(t) - {f_m}(t)} \right)| \le |x - t|\frac{\varepsilon }{{b - a}} < \varepsilon
\end{array}\]上式最後的不等式成立因為 $|x - t| \le |b -a|$。

現在我們觀察
\[\begin{array}{l}
|{f_n}(x) - {f_m}(x)| = |{f_n}(x) - {f_n}({x_0}) + {f_n}({x_0}) - {f_m}({x_0}) + {f_m}({x_0}) - {f_m}(x)|\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}&{}&{}&{}
\end{array} \le \underbrace {|{f_n}(x) - {f_n}({x_0}) + {f_m}({x_0}) - {f_m}(x)|}_{ < \varepsilon } + \underbrace {|{f_n}({x_0}) - {f_m}({x_0})|}_{{\rm{ < }}\varepsilon }\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}&{}&{}&{}
\end{array} < {\rm{2}}\varepsilon
\end{array}
\]故我們證明了 $\{ f_n \}$ 在 $[a,b]$上為 Cauchy (滿足 Cauchy criterion) 故 $\{f_n  \}$ 在 $[a,b]$上均勻收斂。

由於我們已知 $\{ f_n\}$ (均勻)收斂故現在可令
\[
f(x) := \lim_{n \rightarrow \infty} f_n(x), \;\; (x \in [a,b])
\]----
現在給定 $x \in [a,b]$,我們開始證明 2:亦即要證
\[f'\left( x \right) = \mathop {\lim }\limits_{n \to \infty } {f_n}'\left( x \right)
\]我們首先定義兩輔助函數 $\phi_n, \phi$ 如下:對 $t \in [a,b]$ 且 $t \neq x$,
\[{\phi _n}\left( t \right): = \frac{{{f_n}\left( t \right) - {f_n}\left( x \right)}}{{t - x}};\;\;\phi \left( t \right): = \frac{{f\left( t \right) - f\left( x \right)}}{{t - x}}
\]注意到上式 $\phi_n$,若我們讓 $n=1,2,3...$  ,由導數定義可知
\[\mathop {\lim }\limits_{t \to x} {\phi _n}\left( t \right) = {f_n}'\left( x \right) \ \ \ \ (\star)
\]我們希望輔助函數 $\phi_n$ 可以均勻收斂到 $\phi$,由於已知 $\mathop {\lim }\limits_{t \to x} {\phi _n}\left( t \right) = {f_n}'\left( x \right)$ ,故一旦  $\phi_n$ 可以均勻收斂到 $\phi$, 則透過 Theorem of Uniform Convergence Preserves Continuity 可知
1. $\{f_n' \}$ 收斂
2. $\displaystyle \lim_{t \rightarrow x}\phi (t) = \displaystyle \lim_{n \rightarrow \infty} f_n'$

故我們開始證明 $\phi_n$ 均勻收斂到 $\phi$,現在觀察
\[\begin{array}{l}
\left| {{\phi _n}\left( t \right) - {\phi _m}\left( t \right)} \right| = \left| {\frac{{{f_n}\left( t \right) - {f_n}\left( x \right)}}{{t - x}} - \frac{{{f_m}\left( t \right) - {f_m}\left( x \right)}}{{t - x}}} \right|\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}&{}&{}&{}
\end{array} = \left| {\frac{1}{{t - x}}} \right|\left| {\left( {{f_n}\left( t \right) - {f_n}\left( x \right)} \right) - \left( {{f_m}\left( t \right) - {f_m}\left( x \right)} \right)} \right| \ \ \ \ (**)
\end{array}
\]再次利用 Mean Value Theorem 對 $f_n - f_m$ 且讓 $n,m > N$可得
\[\left| {\left( {{f_n}\left( t \right) - {f_m}\left( x \right)} \right) - \left( {{f_n}\left( t \right) - {f_m}\left( x \right)} \right)} \right| \le \left| {t - x} \right|\left| {{f_n}'\left( t \right) - {f_m}'\left( t \right)} \right| < \left| {t - x} \right|\frac{\varepsilon }{{b - a}}  \]
故 $(**)$ 變為
\[\left| {{\phi _n}\left( t \right) - {\phi _m}\left( t \right)} \right| < \left| {\frac{1}{{t - x}}} \right|\left| {t - x} \right|\frac{\varepsilon }{{b - a}} = \frac{\varepsilon }{{b - a}}
\]由於 $b-a$ 為有界,故我們可透過讓 $n,m$ 足夠大使得 $|\phi_n - \phi_m| \rightarrow 0$;亦即 我們證明了 $\{\phi_n \}$ 為 Cauchy ,故若 $t \neq x$,則 $\phi_n$ 均勻收斂 (到 $f_n'$);另外由於我們已知 $f_n$ 均勻收斂到 $f$,故我們可令
\[\mathop {\lim }\limits_{n \to \infty } {\phi _n}(t): = \underbrace {\phi (t)}_{ = {f_n}'\left( x \right)},\;\;t \ne x,t \in [a,b]\]
總結手邊的結果,現在我們有 $\phi_n \rightarrow \phi$ 均勻收斂,且由 $(\star)$ 可知 $\mathop {\lim }\limits_{t \to x} {\phi _n}\left( t \right) = {f_n}^\prime \left( x \right)$ ,故透過 Theorem of Uniform Convergence Preserves Continuity  可知
1. $f_n'$ 收斂
2. 且
\[\begin{array}{l}
\mathop {\lim }\limits_{t \to x} \phi (t) = \mathop {\lim }\limits_{n \to \infty } {f_n}'(x)\\
 \Rightarrow f\left( t \right) = \mathop {\lim }\limits_{n \to \infty } {f_n}'(x)
\end{array}\]

延伸閱讀

留言

這個網誌中的熱門文章

[數學分析] 淺談各種基本範數 (Norm)

這次要介紹的是數學上一個重要的概念:

Norm:一般翻譯成範數
(在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 Norm 想成長度就好 (事實上norm是長度的抽象推廣),

也許讀者會認為好端端的長度不用,為何又要發明一個 norm 來自討苦吃?? 既抽象又艱澀。

事實上想法是這樣的:
比如說現在想要比較兩個數字 $3$ , $5$ 之間的大小,則我們可以馬上知道 $ 3 < 5 $;同樣的,如果再考慮小數與無理數如 $1.8753$ 與 $\pi$,我們仍然可以比較大小 $1.8753 < \pi = 3.1415...$ 故可以發現我們有辦法對 "純量" 做明確的比大小,WHY? 因為前述例子中 $3$, $5$, $1.8753$ or $\pi$ 其各自的大小有辦法被 "measure "!

但是如果是現在考慮的是一組數字 我們如何去measure 其大小呢?? 比如說
\[x:=[1, -2, 0.1, 0 ]^T
\]上式的大小該是多少? 是 $1$? $-2$? $0.1$???
再者如果更過分一點,我們考慮一個矩陣
\[A = \left[ {\begin{array}{*{20}{c}}
1&2\\
3&4
\end{array}} \right]
\],想要知道這個矩陣的大小又該怎麼辦?? 是 $1$ ? $2$ 還是 $4$ ?..其實現階段我們說不清楚。

也正是如此,可以發現我們確實需要新的 "長度" 的定義來幫助我們如何去 measure 矩陣/向量/甚至是函數的大小。

故此,我們首先定義甚麼是Norm,(也就是把 "長度" or "大小" 的本質抽離出來)

==================
Definition: Norm
考慮 $V$ 為一個向量空間(Vector space),則我們說  Norm 為一個函數 $||\cdot|| : V \rightarrow \mathbb{R}$ 且滿足下列性質:

(a) $||v|| \geq 0$, $||v||=…

[分享] 台灣國內免費開放式課程推薦

近幾年由MIT開啟的開放式課程風潮 (MIT-OCW),可以說是讓國內外各大學都開始思考未來教育方式與開放式課程的之間的連結。也使得許多大型開放式課程(Massive open online course, Mooc)聯盟建立起各自的一片天地,比如個人最為推薦的 CourseraedX (目前世界最具規模的跨校大型開放式課程,由全球各個頂尖大學提供線上課程供學生免費學習的網路平台,具備線上評分/繳交作業/考試/表現完整可以得到修業證書的系統)。

不過慶幸的是,其實台灣也提供了非常多相當相當棒的開放式課程(OCW/Mooc),可以讓大家自由而且免費的線上學習,除了免除了語言上的隔閡,也讓以往沒有機會好好學習的人 (ex: 我),有機會透過網路重拾書本,進入大學殿堂再次充電。在這邊跟大家介紹幾個,我個人常去瀏覽的國內開放式課程,
交大開放式課程 (理/工/電資學院課程豐富完整,且有豐富的產/官/學/界各領域人士演講)台大開放式課程 (大量通識類/文史哲課程)清大開放式課程 (自然科學/工程科學課程豐富)台灣開放式課程聯盟 (統合各校開放式課程的總站)ewant 育網開放教育平台 (台灣/大陸交大與台灣其他學校合開課程)台灣均一教育平台 (參考國外可汗學院 (Khan Academy) 設計的互動學習網站,有許多豐富的國小/國中高中/的數理科課程:尤其以數學最為完整。)
另外在此推薦自己上過的幾門課程,因為個人是理工背景,推薦的課程多偏向理工科,但也有相當多文史哲課程都非常豐富且有趣,老師們也都教得很棒,收穫很多,在此分享給大家

==============
數理類 大學部課程:

微積分 
交大OCW: 微積分 I, II - 莊重 教授 清大OCW: 微積分 I, II - 高淑蓉 教授 (高老師的微積分風格嚴謹,整體課程頗有高微的味道,個人非常欣賞)清大OCW: 高等微積分 I - 高淑蓉 教授 ewant :  微積分 - 政大 蔡炎龍 教授 (適合微積分初學者,課程採用 互動數學軟體 Geogebra )台大OCW: 高等微積分 - 陳金次 教授台大OCW: 微積分I ,II  - 齊震宇 教授 ( 適合主修數學的學生,適合微積分初學者)台大OCW: 分析 I, II - 齊震宇 教授線性代數 交大OCW: 線性代數 I, II -莊重 教授
(莊老師講授非常清楚,…