現在回憶我們先前提過控制系統的兩種絕對穩定度:BIBO穩定 與 漸進穩定度。
概念上 BIBO穩定為插上電源看看系統會不會壞掉,漸進穩定則是測試拔掉電源看看系統會不會停止。
Lyapunov Energy Ideas
一般而言,Lyapunov 觀點是透過能量的角度看系統穩定度。也就是說考慮系統狀態 ${\bf{x}}\left( t \right) $,那麼
\[
{\bf{x}}\left( t \right) \to 0 \Leftrightarrow {{\bf{x}}^T}\left( t \right){\bf{x}}\left( t \right) \to 0
\] 注意到上述 ${{\bf{x}}^T}\left( t \right){\bf{x}}\left( t \right)$ 可看成能量。那麼為了達成上式,我們可以透過 能量對時間的變化率 (系統狀態能量對時間微分) 若為負值,則表示能量在逐漸溢散(decaying energy),亦即可透過
\[
\frac{d}{dt} {{\bf{x}}^T}\left( t \right){\bf{x}}\left( t \right) <0
\] 達成 ${\bf{x}}\left( t \right) \to 0 \Leftrightarrow {{\bf{x}}^T}\left( t \right){\bf{x}}\left( t \right) \to 0$
注意:這邊我們說 ${\bf{A}}$ 矩陣為穩定若下面條件成立:
對 ${\bf{A}}$ 的所有 eigenvalue 有負實部。
現在我們看一個例子來展示 Lyapunov Energy Idea,
Example
考慮
\[{\bf{\dot x}}\left( t \right) = \left[ {\begin{array}{*{20}{c}}
{ - 1}&0\\
2&{ - 3}
\end{array}} \right]{\bf{x}}\left( t \right)
\]現試著找出系統能量是否 decaying?
Solution
注意到此系統 $\bf A$ 矩陣 為常數下三角矩陣,其 eigenvalue 為 $-1, -3$ 由穩定度定理可知系統為穩定系統。現在我們看看 Lyapunov Energy Idea 是否也可以幫助我們判別系統穩定度。
首先觀察系統狀態能量的微分
\[\begin{array}{l}
\frac{d}{{dt}}{{\bf{x}}^T}\left( t \right){\bf{x}}\left( t \right) = \frac{d}{{dt}}\left( {\left[ {\begin{array}{*{20}{c}}
{{x_1}\left( t \right)}&{{x_2}\left( t \right)}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{{x_1}\left( t \right)}\\
{{x_2}\left( t \right)}
\end{array}} \right]} \right)\\
\begin{array}{*{20}{c}}
{}&{}
\end{array} = \frac{d}{{dt}}\left( {{x_1}^2\left( t \right) + {x_2}^2\left( t \right)} \right) = 2{x_1}\left( t \right){{\dot x}_1}\left( t \right) + 2{x_2}\left( t \right){{\dot x}_2}\left( t \right)
\end{array}
\]又因為
\[{\bf{\dot x}}\left( t \right) = \left[ {\begin{array}{*{20}{c}}
{ - 1}&0\\
2&{ - 3}
\end{array}} \right]{\bf{x}}\left( t \right) \Leftrightarrow \left[ {\begin{array}{*{20}{c}}
{{{\dot x}_1}\left( t \right)}\\
{{{\dot x}_2}\left( t \right)}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - {x_1}\left( t \right)}\\
{2{x_1}\left( t \right) - 3{x_2}\left( t \right)}
\end{array}} \right]
\]故我們可得
\[\begin{array}{l}
\frac{d}{{dt}}{{\bf{x}}^T}\left( t \right){\bf{x}}\left( t \right) = 2{x_1}\left( t \right){{\dot x}_1}\left( t \right) + 2{x_2}\left( t \right){{\dot x}_2}\left( t \right)\\
\begin{array}{*{20}{c}}
{}&{}
\end{array} = 2{x_1}\left( t \right)\left( { - {x_1}\left( t \right)} \right) + 2{x_2}\left( t \right)\left( {2{x_1}\left( t \right) - 3{x_2}\left( t \right)} \right)\\
\begin{array}{*{20}{c}}
{}&{}
\end{array} = - 2{x_1}^2\left( t \right) + 4{x_2}\left( t \right){x_1}\left( t \right) - 6{x_2}^2\left( t \right) \ \ \ \ (*)
\end{array}
\]現在若上式 $<0$ 則我們由 Lyapunov Energy Ideas 即可斷定系統狀態 ${\bf{x}}\left( t \right) \rightarrow 0$。故我們進一步改寫 $(*)$ 成矩陣形式:
\[\frac{d}{{dt}}{{\bf{x}}^T}\left( t \right){\bf{x}}\left( t \right) = {{\bf{x}}^T}\left( t \right)\underbrace {\left[ {\begin{array}{*{20}{c}}
{ - 2}&2\\
2&{ - 6}
\end{array}} \right]}_Q{\bf{x}}\left( t \right)
\]注意到上述矩陣 $Q$ 為 對稱 負定矩陣(negative definite ) 因為 由對稱負定矩陣定義 : $-Q$ 必須為正定矩陣。由於
\[-Q = \left[ {\begin{array}{*{20}{c}}
2&{ - 2}\\
{ - 2}&6
\end{array}} \right]
\]其對應的
1st Leading principal minor: $= 2 >0$,
2nd Leading principal minor: $= 2 \times 6 - (-2) \times (-2) = 8>0$,故 $Q$ 為負定矩陣。且我們知道此系統能量會溢散。亦即 Lyapunov Energy Ideas 確實可以幫助我們判斷系統穩定度。
現在看下面這個定理:
=======================
Theorem: Lyapunov Theorem
${\bf{A}}$ 矩陣的 所有 eigenvalue 有 負實部 ( ${\bf{A}}$ 矩陣 為穩定) 若且為若
對任意給定 正定對稱 (Positive definite symmetric) 矩陣 ${\bf {Q}}$,其 Lyapunov equation
\[
{{\bf{A}}^T}{\bf{P + PA = }} - {\bf{Q}}
\]有 唯一解 ${\bf {P}}$, 且此唯一解 ${\bf {P}}$ 為 正定對稱矩陣。
=======================
對 ${\bf{\dot x}}\left( t \right) = {\bf{Ax}}\left( t \right)$,現在定義 Energy-like function
\[V\left( {\bf{x}} \right){\rm{ }}: = {{\bf{x}}^T}\left( t \right){\bf{Px}}\left( t \right)\]
其中 $\bf P$ 為 Lyapunov equation ${{\bf{A}}^T}{\bf{P}} + {\bf{PA}} = - {\bf{Q}} $ 的解。則
\[
\frac{d}{dt} {\bf V(x(t))} <0
\]為系統漸進穩定度的判別條件。
寫得很詳細,清楚的將觀念逐一說明,謝謝您.
回覆刪除