跳到主要內容

[隨機分析] Ito-formula 與其應用 (4) - Martingale Revisits

現在回頭再看看 Ito Formula 給我們的 Martingale 判別定理:

==============================
Theorem (Martingale PDE condition)
考慮 $t \in [0,T]$,若 $f \in \mathcal{C}^{1,2}(\mathbb{R}^+ \times \mathbb{R})$,且
\[
\frac{{\partial f}}{{\partial t}} + \frac{1}{2}\frac{{{\partial ^2}f}}{{\partial {x^2}}} =0
\]則 $X_t = f(t, B_t)$ 為一個 Local Martingale。
再者,若  ${\frac{{\partial f}}{{\partial x}}\left( {s,{B_s}} \right)}\in \mathcal{H}^2$,亦即
\[
E \left[\int_0^t \left ( {\frac{{\partial f}}{{\partial x}}\left( {s,{B_s}} \right)} \right)^2 ds \right] < \infty
\]則 $X_t$ 為一個 Martingale
==============================

現在再看個例子看看 Ito Formula 怎麼幫助我們獲得 Martingale

Example 1
令 $B_1(t), B_2(t), B_3 (t),...$ 互為獨立 Standard Brownian Motion。對 $k \in \mathbb{N}$ 定義函數 $g_k$ 與
\[
A_k(t) = \int_0^t g_k(B_1(s), B_2(s), ..., B_k(s))ds
\] 現在試求 $A_2$ 使得
\[
B_1(t)^2 B_2(t)^2 - A_2(t)
\]為 Martingale。 Hint: 利用 上述 PDE Martingale Condition。

Proof
我們要找
\[
{A_2}(t) = \int_0^t {{g_2}} ({B_1}(s),{B_2}(s))ds
\] 使得 $B_1(t)^2 B_2(t)^2 - A_2(t)$ 為 Martingale。

現在定義
\[f\left( {x,y} \right) = {x^2}{y^2}
\] 則我們首先計算其偏導數: ${f_x} = 2x{y^2}{,_{}}{f_{xx}} = 2{y^2}{,_{}}{f_y} = 2{x^2}y{,_{}}{f_{yy}} = 2{x^2}$ 現在由 Ito Formula:
\[
\begin{array}{l}
df\left( {{B_1}(t),{B_2}(t)} \right) = \frac{{\partial f}}{{\partial x}}\left( {{B_1}(t),{B_2}(t)} \right)d{B_1}(t)\\
\begin{array}{*{20}{c}}
{}&{}&{}
\end{array} + \frac{{\partial f}}{{\partial y}}\left( {{B_1}(t),{B_2}(t)} \right)d{B_2}(t) + \frac{1}{2}\left[ \begin{array}{l}
\frac{{{\partial ^2}f}}{{\partial {x^2}}}\left( {{B_1}(t),{B_2}(t)} \right)dt\\
 + \frac{{{\partial ^2}f}}{{\partial {y^2}}}\left( {{B_1}(t),{B_2}(t)} \right)dt\\
 + \frac{{{\partial ^2}f}}{{\partial x\partial y}}\left( {{B_1}(t),{B_2}(t)} \right)d\left\langle {{B_1},{B_2}} \right\rangle
\end{array} \right]\\
 \Rightarrow df\left( {{B_1}(t),{B_2}(t)} \right) = \frac{{\partial f}}{{\partial x}}\left( {{B_1}(t),{B_2}(t)} \right)d{B_1}(t) + \frac{{\partial f}}{{\partial y}}\left( {{B_1}(t),{B_2}(t)} \right)d{B_2}(t)\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} + \frac{1}{2}\left[ {\frac{{{\partial ^2}f}}{{\partial {x^2}}}\left( {{B_1}(t),{B_2}(t)} \right) + \frac{{{\partial ^2}f}}{{\partial {y^2}}}\left( {{B_1}(t),{B_2}(t)} \right)} \right]dt
\end{array}
\] 注意到上式中的 Cross Variation term: $ d\left\langle {{B_1},{B_2}} \right\rangle = 0$;另外為了形式簡潔起見,我們把 函數中的 時間 $t$ 先移除不寫,則上式變成:
\[\begin{array}{l}
df\left( {{B_1},{B_2}} \right) = 2{B_1}{B_2}^2d{B_1} + 2{B_1}^2{B_2}d{B_2} + \frac{1}{2}\left[ {2{B_2}^2dt + 2{B_1}^2dt} \right]\\
 \Rightarrow df\left( {{B_1},{B_2}} \right) = 2{B_1}{B_2}^2d{B_1} + 2{B_1}^2{B_2}d{B_2} + {B_2}^2dt + {B_1}^2dt
\end{array}
\] 現在將其轉換回 積分形式:
\[\begin{array}{l}
\underbrace {f\left( {{B_1},{B_2}} \right)}_{ = {B_1}{{(t)}^2}{B_2}{{(t)}^2}} = 2\int_0^t {{B_1}{B_2}^2d{B_1}}  + 2\int_0^t {{B_1}^2{B_2}d{B_2}}  + \int_0^t {\left( {{B_2}^2 + {B_1}^2} \right)dt} \\
 \Rightarrow {B_1}^2{B_2}^2 - \int_0^t {\left( {{B_2}^2 + {B_1}^2} \right)dt}  = 2\int_0^t {{B_1}{B_2}^2d{B_1}}  + 2\int_0^t {{B_1}^2{B_2}d{B_2}}
\end{array}
\]注意到上式等號右邊為 Local Martingale。現在檢驗 積分變數 是否落在 $\cal{H}^2$ 中,如果是的話,我們即得到 Martingale:故
\[\begin{array}{l}
E\left[ {\int_0^T {{{\left( {{B_1}{B_2}^2} \right)}^2}ds} } \right] = E\left[ {\int_0^T {{B_1}^2{B_2}^4ds} } \right] = \int_0^T {E\left[ {{B_1}^2{B_2}^4} \right]ds} \\
 = \int_0^T {E\left[ {{B_1}^2} \right]E\left[ {{B_2}^4} \right]ds}  = \int_0^T {s\left( {3{s^2}} \right)ds}  = 3\int_0^T {{s^3}ds}  = \frac{3}{4}{T^4} < \infty
\end{array}\] 故可知 ${{B_1}{B_2}^2} \in \cal{H}^2$

同理可證 ${{B_1}^2{B_2}} \in \cal{H}^2$,故我們得到
\[{B_1}{(t)^2}{B_2}{(t)^2} - \int_0^t {\left( {{B_2}^2 + {B_1}^2} \right)dt} \]為 Martingale。亦即
\[
{A_2}(t) = \int_0^t {\left( {{B_2}^2 + {B_1}^2} \right)dt} \ \ \ \ \square
\]

現在我們接續前述的例子,我們看看 $k=3$ 的情況:

Example 2
令 $B_1(t), B_2(t), B_3 (t),...$ 互為獨立 Standard Brownian Motion。對 $k \in \mathbb{N}$ 定義函數 $g_k$ 與
\[
A_k(t) = \int_0^t g_k(B_1(s), B_2(s), ..., B_k(s))ds
\] 現在試求 $A_3$ 使得
\[
B_1(t)^2 B_2(t)^2 B_3(t)^2 - A_3(t)
\]為 Martingale。 Hint: 利用 上述 PDE Martingale Condition。

Proof
如前例,令 $f\left( {x,y,z} \right) = {x^2}{y^2}{z^2}{,_{}} $ ,
\[\left\{ \begin{array}{l}
{f_x} = 2x{y^2}{z^2},\begin{array}{*{20}{c}}
{}
\end{array}{f_{xx}} = 2{y^2}{z^2},\\
{f_y} = 2{x^2}y{z^2},\begin{array}{*{20}{c}}
{}
\end{array}{f_{yy}} = 2{x^2}{z^2},\\
{f_z} = 2{x^2}{y^2}z,\begin{array}{*{20}{c}}
{}
\end{array}{f_{zz}} = 2{x^2}{y^2},
\end{array} \right.
\] 利用 Ito Formula 我們可得
\[\begin{array}{l}
df\left( {{B_1},{B_2},{B_3}} \right) = \frac{{\partial f}}{{\partial x}}\left( {{B_1},{B_2},{B_3}} \right)d{B_1} + \frac{{\partial f}}{{\partial y}}\left( {{B_1},{B_2},{B_3}} \right)d{B_2}\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} + \frac{{\partial f}}{{\partial z}}\left( {{B_1},{B_2},{B_3}} \right)d{B_3} + \frac{1}{2}\left[ \begin{array}{l}
\frac{{{\partial ^2}f}}{{\partial {x^2}}}\left( {{B_1},{B_2},{B_3}} \right)dt\\
\begin{array}{*{20}{c}}
{}
\end{array} + \frac{{{\partial ^2}f}}{{\partial {y^2}}}\left( {{B_1},{B_2},{B_3}} \right)dt\\
\begin{array}{*{20}{c}}
{}
\end{array} + \frac{{{\partial ^2}f}}{{\partial {z^2}}}\left( {{B_1},{B_2},{B_3}} \right)dt
\end{array} \right]\\
 \Rightarrow df\left( {{B_1},{B_2},{B_3}} \right) = \frac{{\partial f}}{{\partial x}}\left( {{B_1},{B_2},{B_3}} \right)d{B_1}\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} + \frac{{\partial f}}{{\partial y}}\left( {{B_1},{B_2},{B_3}} \right)d{B_2} + \frac{{\partial f}}{{\partial z}}\left( {{B_1},{B_2},{B_3}} \right)d{B_3}\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} + \frac{1}{2}\left[ {\frac{{{\partial ^2}f}}{{\partial {x^2}}}\left( {{B_1},{B_2},{B_3}} \right) + \frac{{{\partial ^2}f}}{{\partial {y^2}}}\left( {{B_1},{B_2},{B_3}} \right) + \frac{{{\partial ^2}f}}{{\partial {z^2}}}\left( {{B_1},{B_2},{B_3}} \right)} \right]dt
\end{array}
\] 故
\[\begin{array}{l}
df\left( {{B_1},{B_2},{B_3}} \right) = 2{B_1}{B_2}^2{B_3}^2d{B_1} + 2{B_1}^2{B_2}{B_3}^2d{B_2} + 2{B_1}^2{B_2}^2{B_3}d{B_3}\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} + \frac{1}{2}\left[ {2{B_2}^2{B_3}^2 + 2{B_1}^2{B_3}^2 + 2{B_1}^2{B_2}^2} \right]dt
\end{array}
\]現在轉換回積分形式:
\[\begin{array}{l}
 \Rightarrow \underbrace {f\left( {{B_1},{B_2},{B_3}} \right)}_{ = {B_1}^2{B_2}^2{B_3}^2} = 2\left[ \begin{array}{l}
\int_0^t {{B_1}{B_2}^2{B_3}^2d{B_1}}  + \int_0^t {{B_1}^2{B_2}{B_3}^2d{B_2}} \\
\begin{array}{*{20}{c}}
{}&{}
\end{array} + \int_0^t {{B_1}^2{B_2}^2{B_3}d{B_3}}
\end{array} \right]\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}&{}&{}&{}&{}
\end{array} + \int_0^t {\left( {{B_2}^2{B_3}^2 + {B_1}^2{B_3}^2 + {B_1}^2{B_2}^2} \right)} ds\\
 \Rightarrow {B_1}^2{B_2}^2{B_3}^2 - \int_0^t {\left( {{B_2}^2{B_3}^2 + {B_1}^2{B_3}^2 + {B_1}^2{B_2}^2} \right)} ds\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}&{}&{}&{}&{}
\end{array} = 2\left[ \begin{array}{l}
\int_0^t {{B_1}{B_2}^2{B_3}^2d{B_1}}  + \int_0^t {{B_1}^2{B_2}{B_3}^2d{B_2}} \\
\begin{array}{*{20}{c}}
{}&{}
\end{array} + \int_0^t {{B_1}^2{B_2}^2{B_3}d{B_3}}
\end{array} \right]
\end{array}\] 故上式等號右邊 為 Local Martingale。(讀者可自行驗證其 $\int (\cdot) dB$ 積分的 積分變數全部都落在 $\cal{H}^2$),故為 Martingale,亦即
\[{B_1}^2{B_2}^2{B_3}^2 - \int_0^t {\left( {{B_2}^2{B_3}^2 + {B_1}^2{B_3}^2 + {B_1}^2{B_2}^2} \right)} ds\]為 Martingale。

\[{A_3}(t) = \int_0^t {\left( {{B_2}^2{B_3}^2 + {B_1}^2{B_3}^2 + {B_1}^2{B_2}^2} \right)} ds\]

留言

這個網誌中的熱門文章

[數學分析] 什麼是若且唯若 "if and only if"

數學上的 if and only if  ( 此文不討論邏輯學中的 if and only if,只討論數學上的 if and only if。) 中文翻譯叫做  若且唯若 (or 當且僅當) , 記得當初剛接觸這個詞彙的時候,我是完全不明白到底是甚麼意思,查了翻譯也是愛莫能助,畢竟有翻跟沒翻一樣,都是有看沒有懂。 在數學上如果看到 if and only if  這類的句子,其實是表示一種 雙條件句 ,通常可以直接將其視為" 定義(Definition)" 待之,今天要分享的是這樣的一個句子如何用比較直觀的方法去看他 假設我們現在有 兩個邏輯陳述句 A 與  B. 注意到,在此我們不必考慮這兩個陳述句到底是什麼,想表達什麼,或者到底是否為真(true),這些都不重要。只要知道是兩個陳述即可。 現在,考慮新的陳述:  "A if and only if B" 好了,現在主角登場,我們可以怎麼看待這個句子呢? 事實上我們可以很直覺的把這句子拆成兩部分看待,也就是 "( A if B ) and ( A only if B )" 那麼先針對第一個部分  A if B  來看, 其實這句就是說  if B then A, 更直白一點就是 "if B is true, then A is also true".  在數學上等價可以寫為 "B implies A" .  或者更常用一個箭頭符號來表示 "B $\Rightarrow$  A"  現在針對第二個部分  A only if B 此句意指  "If B is not true, then A is also not true". 所以如果已知 A is true,  那麼按照上句不難推得 B is also true 也就是說  A only if B  等價為 "If A is true then B is also true". 同樣,也可以寫作   "A implies B"   或者用箭頭表示  "A   $\Rightarrow$     B".

[數學分析] 淺談各種基本範數 (Norm)

這次要介紹的是數學上一個重要的概念: Norm: 一般翻譯成 範數 (在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 Norm 想成長度就好 (事實上norm是長度的抽象推廣), 也許讀者會認為好端端的長度不用,為何又要發明一個 norm 來自討苦吃?? 既抽象又艱澀。 事實上想法是這樣的: 比如說現在想要比較兩個數字 $3$ , $5$ 之間的大小,則我們可以馬上知道 $ 3 < 5 $;同樣的,如果再考慮小數與無理數如 $1.8753$ 與 $\pi$,我們仍然可以比較大小 $1.8753 < \pi = 3.1415...$ 故可以發現我們有辦法對 "純量" 做明確的比大小,WHY? 因為前述例子中 $3$, $5$, $1.8753$ or $\pi$ 其各自的大小有辦法被 "measure "! 但是如果是現在考慮的是一組數字 我們如何去measure 其大小呢?? 比如說 \[x:=[1, -2, 0.1, 0 ]^T \]上式的大小該是多少? 是 $1$? $-2$? $0.1$??? 再者如果更過分一點,我們考慮一個矩陣 \[A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 3&4 \end{array}} \right] \],想要知道這個矩陣的大小又該怎麼辦?? 是 $1$ ? $2$ 還是 $4$ ?..其實現階段我們說不清楚。 也正是如此,可以發現我們確實需要新的 "長度" 的定義來幫助我們如何去 measure 矩陣/向量/甚至是函數的大小。 故此,我們首先定義甚麼是Norm,(也就是把 "長度" or "大小" 的本質抽離出來) ================== Definition: Norm 考慮 $V$ 為一個向量空間(Vector space),則我們說  Norm 為一個函數 $||\cdot|| : V \rightarrow \mathbb{R}$ 且滿足下列性質