跳到主要內容

[整理] 金融名詞-權益證卷的估值

以下為整理BKM- Essential of Investment 9th 第13章 權益證卷的估值 的一些專有名詞

1. 比較估值法:
此法為透過觀察 “類似”的企業中  其 股票價格 和 各種決定因素 之間的關係,並透過這些關係來推算目標公司的價值。e.g., 比如說要估計 Intel 的股價,可以透過觀察相關的軟體產業 AMD 來大致推估。

2. 帳面價值(Book Value)
根據 資產-負債表(balance sheet) 確定公司普通股的淨值(The net worth of common equity)
-Book to Market Ratio, BM ratio:
$$\text{BM ratio}:= \frac{BV_0}{P_0}$$
3. 清算價格(Liqudation value (per share))
指一家公司出售所有資產,償付所有負債之後,所剩餘(可分配給股東)的現金。

注意比較下列三種價值
-Book Value: accounting value of equity
-Market Value: price per share $\times$ outstanding shares
-Intrinsic Value = fair value = Net present Value of Cash flow;
if Intrinsic Value > Price (mispricing), then we want to BUY!

4. 重置成本(Replacement cost)
指按照當前市場條件,重新取得同樣一項資產所需支付的現金或現金等價物金額。(對一個 設備or資產 如果重買的話會花多少成本)

5. Tobin's q 比率 (Tobin’s q)
由經濟學家James Tobin提出,是一個 市場價值 比上 重置成本 的比率。
$$Tobin's q : = \frac{Market Value}{Replacement Cost}$$-Tobin 認為從長期來看此比率應趨近於1,但實證顯示並無此結果



內在價值與市場價格

6. 內在價值(Intrinsic value) = Fair value = Net present Value of Cash flow;
內在價值 $P_0$ 可由 公司預期的未來淨現金流(expected future net cash flow) 透過 要求收益率(Required rate of return, k)折現 進行估計。

if Intrinsic Value > Price (mispricing occurs), then we want to BUY!

7. 市場資本化比率 (Market capitalization rate, k)
指市場對要求收益率(Required rate of Return, k)的共識。我們稱作市場資本化比率
- (= required rate of return, k which can be determined by CAPM model) = yield to maturity in bond

8. 股息貼現模型(Dividend Discount model)
使公司內在價值 = 公司所有未來預期股息的模型
$$P_0 = \frac{\mathbb{E}[D_1]}{1+k} + \frac{\mathbb{E}[D_2]}{(1+k)^2}+\frac{\mathbb{E}[D_3]}{(1+k)^3}+...$$延伸閱讀: [投資理論]權證定價(I) - 股息貼現模型(Dividend Discounted Model, DDM)

9. 固定增長股息貼現模型(Constant-growth DDM):
DDM + 假設所有配發股息以 固定增長率 $g$ 來成長。
$${ P_0 = \frac{D_0(1+g)}{1+k} + \frac{D_0(1+g)^2}{(1+k)^2}+\frac{D_0(1+g)^3}{(1+k)^3}+...}$$透過無窮等比級數展開可得下式
$$\Rightarrow \frac{D_0(1+g)}{k-g} = \frac{D_1}{k-g}$$其中 $g := b*ROE$, $b$ 為 再投資比率(plowback ratio)

上式稱作 固定增長股息貼現模型 或稱 Gordon Model
注意:固定增長股息貼現模型 只有在 $g<k$ 時有效


10. 股本回報率 (ROE: return on (shareholder) equity) or Return on equity capital)
衡量相對於股東權益的投資報酬之指標,反映公司利用資產淨值產生利潤的能力。

11.  再投資率 or 收益留存率 (Plowback ratio, Earnings retention ratio, b)
指公司收入中用於 再投資 的比率 (不配發股息),通常以 $b$ 表示
$b=0$ 表示公司不進行 再投資 => 公司零增長: $g := 0$

12. 股息支付率 (Dividend payout ratio)
指公司收入中用於配發股息給股東的比率,以 $1-b$ 表示

下圖為(具有增長前景的)公司在兩種配發股息策略的的現金流:

  • 低再投資率(Low reinvestment, = 較低的 $b$ ) 策略會使的公司在起初有較高的股息支付能力 (但較低的股息增長率)
  • 高再投資率(High reinvestment = 較高的 $b$ ) 策略會使得個公司在最終有較高的股息支付能力。






12. 增長機會現值 (Present value of growth opportunities (PVGO))
表示某公司未來投資的淨現值;
PVGO = 每股股票價格 - 零增長情況下的每股價值
$$PVGO = P_0 - \frac{E_1}{k}$$其中 $k$ 為 必要報酬率 (Required rate of Return)

13. 階段股息折現模型 (Two-stage DDM)
分析師為了評估暫時具有高增長率的公司,所引入的一種 多階段股息貼現模型,概念是預期某公司一開始時具備高增長的股息,接著對其計算對應的折現值,一但公司進入穩定增長階段(constant growth),再引入固定增長股息折現模型的進行估值。


P/E Ratio

12.價格收益乘數or市盈率 (Price-earnings multiple)
每股股票價格與每股收益之比, i.e.,
$$\frac{P_0} {E_1} := \frac{1}{k} \left [1 + \frac{PVGO}{E_1/k} \right ] $$注意到當 $PVGO = 0$ 時,上式變成 $\frac{P_0} {E_1} := \frac{1}{k}$
上式亦可進一步改寫為
$$\Rightarrow \frac{P_0} {E_1} := \frac{1-b}{k-b \times (ROE)}$$- 當ROE上升 $\Rightarrow$ P/E Ratio 跟著上升
- GDP 上升 $\Rightarrow$ 高P/E ratio
- lower government bond yield $\Rightarrow$ lower risk-free rate $\Rightarrow$ higher P/E
- higher equity risk premium $\Rightarrow$ higher required return

13. PEG ratio
P/E Ratio 除以 收入增長率 $g$ 的比值
- 一般而言,PEG ratio應等於1.0

12. 收益管理(Earning management)
透過會計準則的靈活性來提高公司獲利能力的方法。
- 收益管理因為會計準則的操作,使得合理的 P/E ratio 難以被準確估計


自由現金流的估價方法

13. 自由現金流估價模型(Free Cash Flow Valuation Model)
適用於沒有配發股息的公司估值。
公司自由現金流 (Free Cash Flow to the Firm, FCFF)由下式計算

FCFF = EBIT $\times$ (1 - tax) - 折舊花費 - 資本支出 - 淨營運資本 
其中 EBIT (Earning before interests and taxes) 為 利息/稅前 利潤

或者可以考慮股東權益所有者的現金流(Free Cash Flow to Equityholders, FCFE)
FCFE = FCFF - 利息支付 $\times$ (1-tax) + 債務淨增加值


Ref: Z. Bodie, A. Kane, A. Marcus, Essentials of Investments 9th.

留言

這個網誌中的熱門文章

[分享] 台灣國內免費開放式課程推薦

近幾年由MIT開啟的開放式課程風潮 (MIT-OCW),可以說是讓國內外各大學都開始思考未來教育方式與開放式課程的之間的連結。也使得許多大型開放式課程(Massive open online course, Mooc)聯盟建立起各自的一片天地,比如個人最為推薦的 CourseraedX (目前世界最具規模的跨校大型開放式課程,由全球各個頂尖大學提供線上課程供學生免費學習的網路平台,具備線上評分/繳交作業/考試/表現完整可以得到修業證書的系統)。

不過慶幸的是,其實台灣也提供了非常多相當相當棒的開放式課程(OCW/Mooc),可以讓大家自由而且免費的線上學習,除了免除了語言上的隔閡,也讓以往沒有機會好好學習的人 (ex: 我),有機會透過網路重拾書本,進入大學殿堂再次充電。在這邊跟大家介紹幾個,我個人常去瀏覽的國內開放式課程,
交大開放式課程 (理/工/電資學院課程豐富完整,且有豐富的產/官/學/界各領域人士演講)台大開放式課程 (大量通識類/文史哲課程)清大開放式課程 (自然科學/工程科學課程豐富)台灣開放式課程聯盟 (統合各校開放式課程的總站)ewant 育網開放教育平台 (台灣/大陸交大與台灣其他學校合開課程)台灣均一教育平台 (參考國外可汗學院 (Khan Academy) 設計的互動學習網站,有許多豐富的國小/國中高中/的數理科課程:尤其以數學最為完整。)
另外在此推薦自己上過的幾門課程,因為個人是理工背景,推薦的課程多偏向理工科,但也有相當多文史哲課程都非常豐富且有趣,老師們也都教得很棒,收穫很多,在此分享給大家

==============
數理類 大學部課程:

微積分 
交大OCW: 微積分 I, II - 莊重 教授 清大OCW: 微積分 I, II - 高淑蓉 教授 (高老師的微積分風格嚴謹,整體課程頗有高微的味道,個人非常欣賞)清大OCW: 高等微積分 I - 高淑蓉 教授 ewant :  微積分 - 政大 蔡炎龍 教授 (適合微積分初學者,課程採用 互動數學軟體 Geogebra )台大OCW: 高等微積分 - 陳金次 教授台大OCW: 微積分I ,II  - 齊震宇 教授 ( 適合主修數學的學生,適合微積分初學者)台大OCW: 分析 I, II - 齊震宇 教授線性代數 交大OCW: 線性代數 I, II -莊重 教授
(莊老師講授非常清楚,…

[數學分析] 淺談各種基本範數 (Norm)

這次要介紹的是數學上一個重要的概念:

Norm:一般翻譯成範數
(在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 Norm 想成長度就好 (事實上norm是長度的抽象推廣),

也許讀者會認為好端端的長度不用,為何又要發明一個 norm 來自討苦吃?? 既抽象又艱澀。

事實上想法是這樣的:
比如說現在想要比較兩個數字 $3$ , $5$ 之間的大小,則我們可以馬上知道 $ 3 < 5 $;同樣的,如果再考慮小數與無理數如 $1.8753$ 與 $\pi$,我們仍然可以比較大小 $1.8753 < \pi = 3.1415...$ 故可以發現我們有辦法對 "純量" 做明確的比大小,WHY? 因為前述例子中 $3$, $5$, $1.8753$ or $\pi$ 其各自的大小有辦法被 "measure "!

但是如果是現在考慮的是一組數字 我們如何去measure 其大小呢?? 比如說
\[x:=[1, -2, 0.1, 0 ]^T
\]上式的大小該是多少? 是 $1$? $-2$? $0.1$???
再者如果更過分一點,我們考慮一個矩陣
\[A = \left[ {\begin{array}{*{20}{c}}
1&2\\
3&4
\end{array}} \right]
\],想要知道這個矩陣的大小又該怎麼辦?? 是 $1$ ? $2$ 還是 $4$ ?..其實現階段我們說不清楚。

也正是如此,可以發現我們確實需要新的 "長度" 的定義來幫助我們如何去 measure 矩陣/向量/甚至是函數的大小。

故此,我們首先定義甚麼是Norm,(也就是把 "長度" or "大小" 的本質抽離出來)

==================
Definition: Norm
考慮 $V$ 為一個向量空間(Vector space),則我們說  Norm 為一個函數 $||\cdot|| : V \rightarrow \mathbb{R}$ 且滿足下列性質:

(a) $||v|| \geq 0$, $||v||=…