跳到主要內容

發表文章

目前顯示的是 十二月, 2013的文章

[控制理論] 線性化(Linearization)

這次要跟大家介紹的是 線性化 (Linearization) 的概念,讀者建議須先具備基本 Taylor Series 概念,如果不熟悉的讀者可先參閱 [微積分] 泰勒展開式 與 泰勒級數 。

為何要做線性化?
其實線性化的動機很簡單,主要是因為一般在分析動態系統的時候,大部分系統行為都是呈現非線性(EX: 電路系統(二極體 I/V curve),倒單擺、撓性機構、機器人、生物細胞、金融模型...),但這些非線性行為會有一個大的困難,就是難以直接求解其動態行為。且發展成熟的線性系統理論沒有辦法(有效的)應用在上面,但如果能夠透過一些假設/機制,我們可以把原本非線性的系統轉成線性系統,如此一來原本沒辦法使用的線性系統理論便可以派上用場!!

如何做線性化?
至於實際如何做到對任意 非線性函數 (e.g., $\sin, \cos, \exp, x^n$, ...)線性化呢? 簡單來說,就是採用切線 (微分) 的概念,如果我們對關心的某一點對該點取導數,則我們可以得到一條對該點的切線,此切線可以在某種程度上用來近似 該點附近的函數行為。

https://controls.engin.umich.edu/wiki/index.php/LinearizingODEs

----- 以下進入正題 ----

若用數學來描述非線性的系統可以寫成
\[
\dot x(t) = f(x)
\]其中 $x(t) \in \mathbb{R}^n$ 稱作系統狀態(state variable) (這邊考慮 $n$ 維空間,故有 $n$ 個系統狀態變數); $\dot x(t)$ 為系統狀態的一階導數; $f$ 為用以描述動態系統的任意函數

在此我們考慮系統狀態為 $n$ 階。意思就是有 $n$ 個不同的系統狀態,記做  $x \in \mathbb{R}^n$


在介紹線性化之前,我們得先介紹 "平衡點(equilibrium point)"

=====================
Definition: Equilibrium point
若 $f(\bar{x})=0$ ,則系統狀態 $\bar{x} \in \mathbb{R}^n$ 被稱作 平衡點(equilibrium point)。
=====================

Comments
由上述定義可以推知…

[整理]金融名詞-債卷價格與收益率

債卷特徵以下為整理BKM- Essential of Investment 9th
第10章 風險與收益 的一些專有名詞

1. 債卷 (Bond)
一種固定收益證卷(Fixed-income securities),債卷發行者 有義務 在確定的期限之內 對債卷持有者 支付確定金額的證卷
-一般而言債卷的息票利率(coupon rate)為半年(182 days)支付一次。
-債卷價格可由(有限期數股息折現公式DDM)下式求得
\[
P_0 := \frac{C}{1+r} + \frac{C}{(1+r)^2}+...+\frac{C+Par}{(1+r)^n}
\]也就是說:債券價格 $P_0$, 是債券的 預期現金流 $C$ ,經過合適的折現率 $r$ 折現以後的現值。

-Dirty Price = Clean price + Accrued interest
-Invoice Price = Flat price + Accrued interest
-Accrued interest

2. 債卷面額 (Face Value, Par Value)
當債卷到期時,債卷發行人 向 債卷持有人 支付債卷的面額來清償該筆債務。

3. 債卷息票利率 or 票面利率(Coupon rate)
年利息支付額 (Coupon payment, C) 等於債卷息票率 $\times$ 債卷面額
\[
C = ParValue \times Coupon \ Rate
\]
4. 零息債卷 (Zero-coupon bond)
不支付利息的債卷且到期時只會支付投資人債卷面額。為了補償此利息上的損失。零息債卷多折價發行。(the selling price is below par value)

5. 美國常見的債卷
U.S. Treasury bills: maturities of 3 or 13, 26 or 52 weeks.
U.S. Treasury notes: maturities of 2,3,5,7 and 10 years
U.S. Treasury bonds: maturity of 30 years

公司債卷(Corporate Bonds)可贖回債卷(Callable bonds)可賣回債卷(Puttable bonds)可轉換債卷(Convertible bond…

[整理] 金融名詞-風險與收益 (Risk and return)

以下為整理BKM- Essential of Investment 9th 第5章 風險與收益 的一些專有名詞

1. (單一)持有期收益率 (Holding-period return, HPR)
在特定投資期限之內的 收益率 (rate of return, $r$  )。其定義如下
\[
HPR := r = \frac{EV-BV+D}{BV}
\]其中 $EV$ 表示持有期間的 期末價格 (Ending Value); $BV$ 表示 期初價格 (Beginning Value); $D$ 表示期末配發的 現金股息(Dividend)

多個時期收益率的測量方法
算術平均法 (Arithmetic average)幾何平均法 (Geometric average)資金加權平均法 (Dollar-weighted average)
2. 算術平均法(Arithmetic average (of n periods))
對各時期的收益率 $r_i$ 取平均得到平均收益率 $m$
\[
m:=\frac{1}{n} \displaystyle \sum_{i=1}^{n} r_i
\]
3. 幾何平均法 (Geometric average (of n periods))
將各時期的收益率 $r_i$ 取幾何平均(考慮複利的效果)可得幾何平均收益率 $g$ 亦即 $g$ 滿足
\[
 (1+g)^n = (1+r_1)(1+r_2)(1+r_3)...(1+r_n)
\]
4. 資金加權平均法 (Dollar-weighted average of n periods)
此法可計算出內部收益率(Internal Rate of Return, IRR on an investment)
其概念為應用 現金流折現模型計算內部收益率
\[
PV = \frac{C}{1+IRR} +  \frac{C}{(1+IRR)^2} +...+ \frac{C}{(1+IRR)^n}
\]其中 $PV$ 為現值, $C$ 為現金流, $IRR$ 為內部收益率, $n$為期數




風險與風險溢價 (Risk and Risk premium)

兩種分析收益率的方法: 
對未來預測:使用情境分析 (機率論)對過去分析:使用歷史資料 (統計學)
4. 情境分析 (Scenario analysis (…

[投資理論]權證定價(II) - 固定增長股息貼現模型(Constant growing DDM)

[投資理論]權證定價(II) - 固定增長股息貼現模型(Constant growing DDM) 
這次是延續上一次與大家分享 的股息貼現模型(DDM)
[投資理論]權證定價(I) - 股息貼現模型(Dividend Discounted Model, DDM) 

我們在上一篇文章中有簡介DDM的推導,並於最後提到DDM本身的缺陷 (DDM需要知道任何未來年份的配發股息預期值。但事實上這仍是難以估計),為了克服這個問題,Gordon 教授於1956年 提出外加一個簡化的假設來企圖使DDM可以容易使用:

假設:股息全部由固定增長率來增加
此修正型的股息貼現模型 我們稱作 固定增長股息貼現模型 或者 Gordon 模型

在介紹模型之前,我們得先再回頭看看 Gordon 教授提出的簡化假設到底是甚麼意思?
也就是說什麼叫做 股息全部由固定增長率來增加? 在甚麼樣的情況之下這件事情會成立:

這個問題的答案就是如果某間公司是 所謂的 固定增長公司 (Constantly Growing Firm),則其具備股息為固定增長率來增長。

固定增長公司假設:
公司無任何負債,也就是說資產-債務表上: 資產 = 股東權益公司的 股本權益收益率(Return on Equity, ROE) 為固定常數公司的 再投資率(Plowback ratio, b)為固定常數公司利潤(Earning) $E_t$、配發股息(Dividend) $D_t$、與股東權益(Equity = Book Value) 全為固定速率增長 也就是說公司增長率:
$g:= b \times (ROE) =  \left ( \frac{E_t}{E_{t-1}}-1 \right )= \left( \frac{D_t}{D_{t-1}}-1 \right) = \left( \frac{BV_{t}}{BV_{t-1}} \right) $ 若上述假設成立,則固定增長速率的公司可以讓我們推論:
首先透過會計或者資產-債務表 (balancing sheet)中,可得到初始 帳面價值(Book Value), $BV_{t-1}$
接著,由初始帳面價值 $BV_{t-1}$ 可以計算:

公司的年末利潤: $E_t = BV_{t-1} \times (ROE)$ 公司的年末配發股息: $D_t := E_t(1-b)…

[整理] 金融名詞-權益證卷的估值

以下為整理BKM- Essential of Investment 9th 第13章 權益證卷的估值 的一些專有名詞

1. 比較估值法:
此法為透過觀察 “類似”的企業中  其 股票價格 和 各種決定因素 之間的關係,並透過這些關係來推算目標公司的價值。e.g., 比如說要估計 Intel 的股價,可以透過觀察相關的軟體產業 AMD 來大致推估。

2. 帳面價值(Book Value)
根據 資產-負債表(balance sheet) 確定公司普通股的淨值(The net worth of common equity)
-Book to Market Ratio, BM ratio:
$$\text{BM ratio}:= \frac{BV_0}{P_0}$$
3. 清算價格(Liqudation value (per share))
指一家公司出售所有資產,償付所有負債之後,所剩餘(可分配給股東)的現金。

注意比較下列三種價值
-Book Value: accounting value of equity
-Market Value: price per share $\times$ outstanding shares
-Intrinsic Value = fair value = Net present Value of Cash flow;
if Intrinsic Value > Price (mispricing), then we want to BUY!

4. 重置成本(Replacement cost)
指按照當前市場條件,重新取得同樣一項資產所需支付的現金或現金等價物金額。(對一個 設備or資產 如果重買的話會花多少成本)

5. Tobin's q 比率 (Tobin’s q)
由經濟學家James Tobin提出,是一個 市場價值 比上 重置成本 的比率。
$$Tobin's q : = \frac{Market Value}{Replacement Cost}$$-Tobin 認為從長期來看此比率應趨近於1,但實證顯示並無此結果



內在價值與市場價格

6. 內在價值(Intrinsic value) = Fair value = Net present Value of Cash flow;
內在價值 $P_0$ 可由 公司預期的未來淨…

[整理] 金融名詞-巨觀經濟分析與產業分析

以下為整理BKM- Essential of Investment 9th
第12章 巨觀經濟分析與產業分析 的一些專有名詞
1. 基本面分析(Fundamental analysis)
對於某公司之價值的一種分析。主要透過尋找各種決定因素來分析該公司價值,比如透過公司未來的收入,或者未來配發的股息。
-top-down 的證卷定價方法:由全球或者國內巨觀經濟開始
-bottom-up 的證卷定價方法:  由特定公司股票開始


2. 匯率(Exchange rate)
本國貨幣兌換其他國家貨幣(外幣)的比率。
-匯率波動 $\rightarrow$ 由外幣定價的商品價格亦會產生波動



國內巨觀經濟的關鍵影響因素GDP失業率通貨膨脹率利率心理因素政府政策財務政策貨幣政策
利率(Interest Rate, I.R.) 與巨觀經濟之間的關係
-注意到 利率為 股價/債卷 的反向指標
-對公司而言:利率上升 $\rightarrow$公司貸款利息加重 $\rightarrow$利潤下降 $\rightarrow$股票價格下降 -對投資人而言: 利率上升 $\rightarrow$投資人會把錢從股市抽離轉存銀行或其他金融市場 -對巨觀經濟而言: 利率上升 $\rightarrow$通貨緊縮 $\rightarrow$股市資金減少 $\rightarrow$股價下跌  相反的如果利率下降 $\rightarrow$公司貸款利息減輕 $\rightarrow$利潤上升 $\rightarrow$股價上升
3. 國內生產總值 or 國內生產毛額 Gross domestic product, GDP
在一段時間內(通常是一年),其國內 生產商品or提供服務 的市場價值(market value)
- typically measure 1 year (annual GDP), sometimes measure quarterly (quarter GDP)
- GDP 如果快速成長 => 該國經濟正在迅速擴張

4. 失業率 (Unemployment rate)
失業率 := 失業人口總數 / 總勞動人口數 

5.通貨膨脹率(Inflation rate)
通貨膨脹率為一個比率,用以表明 商品or服務 總體價格水平的上漲程度。
-政府可以透過 1.提高利率 或者 2.降低 貨幣供給 來抑制通貨膨脹 (製造通貨緊縮)
-…

[投資理論]權證定價(I) - 股息貼現模型(Dividend Discounted Model, DDM)

權證定價(I) - 股息貼現模型(Dividend Discounted Model, DDM)  這次要跟大家分享權證定(估)價的基本方法。
不過在分享前,讓我們先處理一個問題。

Q: 我們為何需要估價?
基本想法很簡單:因為如果投資人可以找到某個市場價格偏離"真實"價格的股票。則此時便存在透過 買低賣高 來賺取利潤的機會 (亦即 存在 套利 (arbitrage) 的機會)。

注意到,我們並未定義 "何謂股票的真實價格",一般而言 "真實價格" 指的是某證卷(EX: 股票/債卷...)的 內在價值(Intrinsic Value),而 估價方法(Valuation) 就是要試圖(合理的)找出某證卷的內在價值。

所以現在問題變成
Q: 如何(合理的)找到某證卷的內在價值呢?
這個問題最早是由 John Burr Williams 於1938年提出解決之道,之後由經濟學家 Myron J. Gordon 教授引入一個稱作 股息貼現模型(Dividend Discounted Model)來回答這個問題

股息貼現模型的基本想法如下:
Gordon教授認為
股票的價格應該可由 其未來所有配發的股息 將其折現(discounted)求得。

所以以下我們將逐步推導此模型

現在考慮某股票的初始股價 $P_0$ (我們想要估算此初始股價),
接著考慮一年後股價(price)為 $P_1$,一年後配發股息(dividend)為 $D_1$,則我們可以計算一年後收益率(return) $r$為
\[
r=\frac{P_1+D_1}{P_0}-1
\]不過注意到一年後的股價 $P_1$ 與 一年後配發的股息 $D_1$ 事實上是未知數。因為我們無法準確預測一年後股價or股息會是多少。所以在數學上的取巧方法就是對它們取期望值,表示我們"預期"一年後股價與股息是多少

所以上式中 $P_1$ 由  $\mathbb{E}[P_1]$  取代,  $D_1$  由  $\mathbb{E}[D_1]$  取代。
則此時收益率$r$就變成了"預期"收益率 $\mathbb{E}[r]$ 故我們得到
\[
\mathbb{E}[r]=\frac{\mathbb{E}[P_1]+\mathbb{E}…

[機率論] 淺談機率公理 與 基本性質

機率公理(Axioms of probability) 是由俄國數學家 Andrey Kolmogorov (1903-1987) 建立。我們的目的主要是簡介此公理系統 並 進而檢驗由此公理系統所衍生的一些性質。

閱讀前建議具備基礎集合論概念。
讀者可參閱此文:[整理] 基礎集合論的數學語言(1) - Set Operations


再談之間機率公理之前我們先思考兩個 隨機實驗:

從閉區間 $[0,1]$ 之中 任選一個數字做無限次的丟銅板實驗
上述兩個實驗,我們每做一次紀錄其 實驗結果 $\omega$,並將每次的輸出結果收集起來,此結果形成一個 樣本空間(sample space) $\Omega$。

對 實驗1 而言,樣本空間即為 $ \Omega :=[0,1]$ ,其 實驗結果記做 $\omega$

對於實驗2,我們可以定義樣本空間為
\[
\Omega_\infty := \{ \text{the set of infinite sequences of Heads' and Tail's}\}
\] 樣本輸出結果 $\omega = \omega_1 \omega_2 ...$ 其中 $\omega_n$ 為第 $n$ 次丟銅版的結果。

那麼如何對上述樣本空間中發生的 "事件" 定義 "機率" 呢? 我們需要 機率空間(Probability space) 的概念:

=====================
Definition: Probability Space
一個 機率空間 (Probability space) 為一個三元素組成的集合記做 $(\Omega, \cal{F}, P)$。其中 $\Omega$ 定義為 實驗結果所形成的 非空集合(又稱為樣本空間),$\cal F$ 為 事件(or 多個事件) 形成的集合,而 $P$ 為一個函數 $P : \cal{F} \rightarrow [0,1]$ 用作指定對應事件的機率。
====================

Comment:
上述定義提及 $\cal{F}$ 又稱 $\sigma$-algebra or $\sigma$-field 滿足下列條件
(i) 對任意子集合 $A \subset \Omega$,若 $A \in \c…

2013/12/24 板橋長老教會燭光平安夜

歡迎一同前往 :)
願神的平安常常與我們同在







==========================

相關連結 關於板橋基督長老教會: 板橋基督長老教會華語禮拜 Facebook專版板橋基督長老教會華語禮拜敬拜讚美 Youtube頻道主日禮拜時間:
《台語禮拜》週日上午09:30~11:00
《國語禮拜》週日上午11:05~12:30
教會地址:台北縣板橋市明德街1巷3號
連絡電話:02-29687749

[整理] 金融名詞-共同基金與其他投資公司

以下為整理BKM- Essential of Investment 9th
第4章 共同基金與其他投資公司 ( Mutual Funds and investment companies)  的一些專有名詞

投資公司1. 投資公司 (investment companies)
將個人投資者的資金投資於眾多股票和其他資產的金融中介機構 (financial intermediaries)。 -基本想法就是 集中資產 實現多樣化。
2. 淨資產價值 (Net Asset Value (NAV))
資產市值 減去 負債 除以 發行在外的股份數 \[
NAV = \frac{Market \ Value \ of \ assets - liabilities}{Outstanding \ shares}
\]

投資公司的類型單位投資信託 (無管理)有管理的投資公司開放式基金: 允許投資人隨時以NAV價格 購買或贖回基金股份封閉式基金: 交易價格不同於NAV,購買或贖回股份的行為在封閉基金的投資人之間。無法直接對基金公司進行購買或贖回

3. 單位投資信託 (Unit investment trust)
 在基金存續期間之內,投資於 固定 的資產組合,其來源為眾多投資者的資金之集合
-無額外管理 $\Rightarrow$ 管理費用較為低廉
-固定投資組合

4. 開放式基金(open-end fund)
允許隨時以 NAV 購買或贖回 基金股份的一種基金
- 股票可贖回 - 基金股份價格永遠不低於NAV
4. 封閉式基金 (closed-end fund)
交易價格不同於 NAV 的基金,股票可以不按照NAV價格贖回
- 交易價格不同於NAV,在開放市場中交易

5. 銷售費用(load)
傭金的一種,用以購買/銷售共同基金所需支付給賣方的銷售費用
-主要有兩種:一種為前端費用(front-end loads) 一種為後端費用(back-end loads)

其他投資機構混合基金(Commingled funds)不動產投資信託(Real Estate Investment Trusts, REITs)避險基金(Hedge funds)
6. 避險基金 (hedge fund)
對富有的投資人或大型投資機構開放,本身不受 證卷交易委員會(SEC) 的約束。可以投資於比共同基金風險更高的證卷…