跳到主要內容

發表文章

目前顯示的是 三月, 2014的文章

[隨機分析] Ito-formula 與其應用 (4) - Martingale Revisits

現在回頭再看看 Ito Formula 給我們的 Martingale 判別定理:

==============================
Theorem (Martingale PDE condition)
考慮 $t \in [0,T]$,若 $f \in \mathcal{C}^{1,2}(\mathbb{R}^+ \times \mathbb{R})$,且
\[
\frac{{\partial f}}{{\partial t}} + \frac{1}{2}\frac{{{\partial ^2}f}}{{\partial {x^2}}} =0
\]則 $X_t = f(t, B_t)$ 為一個 Local Martingale。
再者,若  ${\frac{{\partial f}}{{\partial x}}\left( {s,{B_s}} \right)}\in \mathcal{H}^2$,亦即
\[
E \left[\int_0^t \left ( {\frac{{\partial f}}{{\partial x}}\left( {s,{B_s}} \right)} \right)^2 ds \right] < \infty
\]則 $X_t$ 為一個 Martingale
==============================

現在再看個例子看看 Ito Formula 怎麼幫助我們獲得 Martingale

Example 1
令 $B_1(t), B_2(t), B_3 (t),...$ 互為獨立 Standard Brownian Motion。對 $k \in \mathbb{N}$ 定義函數 $g_k$ 與
\[
A_k(t) = \int_0^t g_k(B_1(s), B_2(s), ..., B_k(s))ds
\] 現在試求 $A_2$ 使得
\[
B_1(t)^2 B_2(t)^2 - A_2(t)
\]為 Martingale。 Hint: 利用 上述 PDE Martingale Condition。

Proof
我們要找
\[
{A_2}(t) = \int_0^t {{g_2}} ({B_1}(s),{B_2}(s))ds
\] 使得 $B_1(t)^2 B_2(t)^2 - A_2(t)$ 為 Marting…

[隨機分析] Ito-formula 與其應用 (3) - Differential form of the Ito formula and the Standard stochastic process

延續前篇,回憶我們手上有的雙變數 Ito formula for standard Brownian motion $B_t$ 。

若 $f \in \mathcal{C}^{1,2}(\mathbb{R}^+ \times \mathbb{R})$,則我們有 Ito formula
\[ \small
f(t,B_t) = f(0,B_0) + \int_0^t \frac{{\partial f}}{{\partial t}}\left( {s,{B_s}} \right)d{s} + \int_0^t \frac{{\partial f}}{{\partial x}}\left( {s,{B_s}} \right)d{B_s} + \frac{1}{2} \int_0^t \frac{{\partial^2 f}}{{\partial x^2}}\left( {s,{B_s}} \right)d{s}
\]
一般而言上述形式過於冗長,文獻中多半將上式改寫為微分形式如下
\[
df(t,B_t) = \frac{{\partial f}}{{\partial t}}\left( {t,{B_t}} \right)d{t} + \frac{{\partial f}}{{\partial x}}\left( {t,{B_t}} \right)d{B_t} +  \frac{1}{2}\frac{{\partial^2 f}}{{\partial x^2}}\left( {t,{B_t}} \right)d{t}
\]

Comments:
上式微分形式僅為積分縮寫亦即微分形式的Ito formula是 書寫上較為方便,但並無實質定義。注意到當初在定義隨機積分 (Ito integral) 的時候,只有積分有嚴格定義 ( 用approximating sequence of step function in $\mathcal{H}_0^2$ 定義隨機積分,接著用 Density Lemma 拓展隨機積分到$\mathcal{H}^2$ space。),故並無微分的定義。

 WHY? 因為 注意到微分形式需要 $dB_t$ 但是回憶標準布朗運動,我們知道$B_t$ 為連續函數但處處不可微分( but quadratic variation is finite in pr…

[隨機分析] Ito-formula 與其應用 (2) - Martingale PDE condtion

回憶先前提及的  Ito Integral 有下列重要結果:Ito-integral 為一個隨機過程,且若積分變數 $f \in \mathcal{H}^2$,則隨機積分為一個 Martingale。若 $f \in L_{LOC}^2$,則隨機積分為一個 Local martingale。我們把此結果記做 $(\star)$

現在我們來看看 Ito formula 可以幫助我們判別是否為 Martingale or Local Martingale。

現在考慮 $t \in [0,T]$,回憶雙變數的 Ito formula
\[
\small{
f(t,B_t) = f(0,B_0) + \int_0^t \frac{{\partial f}}{{\partial t}}\left( {s,{B_s}} \right)ds +  \int_0^t \frac{{\partial f}}{{\partial x}}\left( {s,{B_s}} \right) dB_s +  \frac{1}{2}\int_0^t \frac{{\partial^2 f}}{{\partial x^2}}\left( {s,{B_s}} \right)ds }
\]
現在將上式 $\int ds$ 項合併,可得
\[
\small{ f(t,{B_t}) = f(0,{B_0}) + \int_0^t {\left( {\frac{{\partial f}}{{\partial t}}\left( {s,{B_s}} \right) + \frac{1}{2}\frac{{{\partial ^2}f}}{{\partial {x^2}}}\left( {s,{B_s}} \right)} \right)} ds + \int_0^t {\frac{{\partial f}}{{\partial x}}} \left( {s,{B_s}} \right)d{B_s}}
\]觀察上式,如果  $\int ds$ 項為零,亦即
\[
{\frac{{\partial f}}{{\partial t}}\left( {s,{B_s}} \right) + \frac{1}{2}\frac{{{\partial ^2}f}}{{\partial {x^2}}}\left( {s,{B…

[隨機分析] Ito-formula 與其應用 (1) - Two variables case

回憶我們在上一篇
[隨機分析] Ito-formula 與其應用 (0) -Simplest Case
所提出的問題先前問題,考慮
\[
M_t := \exp(\alpha B_t - \alpha^2 t/2)
\]我們想要計算此Ito Integral
\[
\int_0^t M_s dB_s =?
\]注意到上式隨機積分中的積分變數 $M_t$ 不只是 $B_t$ 的函數,亦為 $t$的函數(亦即 $M_t = f(t, B_t)$ 為雙變數函數) 故原本的 simplest form of Ito formula  沒辦法直接應用,我們需要進一步修正Ito formula來讓我們可以對付 這種情況。

在修正Ito Formula 之前我們先定義下列函數

Definition: ($f \in \mathcal{C}^{m,n}(\mathbb{R^+} \times \mathbb{R})$)
考慮函數 $(t,x)  \mapsto f(t,x) \in \mathbb{R}$,且其對 $t$ 存在 $m$ 階導數且連續,對 $x$ 存在 $n$ 階導數且連續,則我們稱此函數 $f \in \mathcal{C}^{m,n}(\mathbb{R^+} \times \mathbb{R})$

有了上面的定義,我們可以著手拓展Ito formula到雙變數函數 如下

=================
Theorem (Ito's Formula with Space and Time Variables)
對任意函數 $f \in \mathcal{C}^{1,2}(\mathbb{R}^+ \times \mathbb{R})$,則對應的 Ito's formula 為
\[
\small{
f(t,B_t) = f(0,B_0) + \int_0^t \frac{{\partial f}}{{\partial t}}\left( {s,{B_s}} \right)ds +  \int_0^t \frac{{\partial f}}{{\partial x}}\left( {s,{B_s}} \right) dB_s +  \frac{1}{2}\int_0^t \frac{{\partial^2 f}}{{\partial x^2}}\l…

[隨機分析] Ito-formula 與其應用 (0) -Simplest Case

在微積分中,我們計算的時候大多仰賴 微積分基本定理(Fundamental Theorem of Calculus)。那麼我們想問在建立隨機分析之後,是否也有類似的結果呢? 答案是肯定的。在隨機分析中這樣的結果稱作Ito formula 或者 Ito Lemma
Theorem (Ito Formula - simplest Case)
若 $f : \mathbb{R}  \rightarrow  \mathbb{R}$ 且 $f \in \mathcal{C}^2$則
\[
f(B_t) = f(B_0) + \int_0^t f'(B_s) dB_s + \frac{1}{2}\int_0^t f''(B_t) ds \ \ \ \ (*)
\]
Comments:
1. 注意到如果上式 第二個積分 $\frac{1}{2}\int_0^t f''(B_t) ds=0$ (NOT Ito integral, but Lebesgue integral)的話,則我們確實回到的微積分基本定理。故第二項積分又稱 Ito correction term。
2. 注意到 第一個積分 $\int_0^t f'(B_s) dB_s $ (Ito integral) 為 zero mean,故此暗示了後方第二個積分必須要包含所有關於函數 $f(B_t)$ 漂移(drift)程度的資訊。
3. 注意到函數必須二階可微連續,亦即 $f \in \mathcal{C}^2$
4. 注意到 Ito Integral 有下列重要結果:Ito-integral 為一個隨機過程,且若 $f \in \mathcal{H}^2$,則隨機積分為一個 Martingale。若 $f \in L_{LOC}^2$,則隨機積分為一個 Local martingale。

這邊我們先不證明,先舉幾個例子看看這個Ito formula 在計算Ito Integral的威力。

Example 1
令 $B_t$為標準布朗運動,試求  $\int_0^t B_s dB_s = ?$

Solution
因為我們想要求  $ \int_0^t B_s dB_s$,故想法是希望透過應用 Ito formula 來為我們產生出此隨機積分項。此積分項出現在Ito formula 等…

[衍生商品] 常見的選擇權交易策略(0) - 牛/熊市策略

基本選擇權策略可分為下列三類:

牛市策略(Bullish Strategy) : 牛市價差組合
認為股票會漲所使用的選擇權策略熊市策略(Bearish Strategy) : 熊市價差組合
認為股票會跌所使用的選擇權策略 無方向策略(Neutral or non-directional Strategy) : 其他各種組合 (Straddle, Strap, ...)
不確定漲跌時,但大約知道股票波動程度 (高 or 低)時所使用的選擇權策略)
現在我們先介紹第1種策略:

牛市策略(Bullish Strategy)

-牛市價差 (Bull Spread) 組合 (透過Call option):
買入 一份 call option  與 賣出 一份(其他規格完全相同) 但 執行價格 $K$ 較高的 call option 。所組成,下面考慮兩個執行價格 $K_1$ 與 $K_2$ 且 $K_2 > K_1$,則我們 Long a call @ $K_1$+ Short a call @ $K_2$,則此時 在到期時的收益 (不考慮 權利金( premium)的情況),可得到如下圖 (點圖放大)

現在如果我們考慮更實際的情況,也就是考慮要支付權利金 (premium) (也就是選擇權的價格),則此時 在到期時的收益變成 (點圖放大)

上圖中灰線代表未支付權利金時的情況。且 $FV(\cdot)$ 表示計算Future Value  另外 執行價格 $K_1$ 對應的 選擇權價格 $C(K_1)$。執行價格 $K_2$ 對應的 選擇權價格 $C(K_2)$。
Comments: 1. 由 選擇權定義可知,執行價格 $K_2 > K_1$ ,則 對應的選擇權價格 $C(K_2) < C(K_1)$。也就是說較低的執行價格較吸引人,因為表示可以較低的 $K_1$ 價格就購入股票。
2. 此法可用在認為股票會漲但可能漲幅有限,且自己不想付太多手續費時採用。WHY? 因為如果如果只有購入 一份 Call option @ $K_1$,則我們需在當日支付 $C(K_1)$ 的權利金,但是 如果採用 Bull Spread的策略,我們只在當日需支付
\[
C(K_2) - C(K_1)
\]
注意到由comment 1可知, $C(K_2) < C(K_1) \Rig…

[隨機分析] Ito Integral 淺談 (V) - Ito Integral on L^2 Local space and the connection with Gaussian process

這次要介紹的是 Ito integral on L^2 Local space 的另外一個重要結果:

如果我們考慮 積分變數 $f$ 不再是隨機過程,亦即 $f$ 為一非隨機函數, e.g., $f(t)$ (不再是 $f(t,\omega)$),則對此函數的 Ito integral:
\[
 \int_0^t f(s) dB_s
\]為一個 Gaussian Process with zero mean 與 variance $\int_0^t f(s)^2 ds$。我們將此結果計做以下定理

Theorem (Nonrandom integrand of Ito integral yields a Gaussian process)
若 $f \in \mathcal{C}[0,T]$ 為隨機 連續函數,則由 Ito integral 所定義的 隨機過程 $X_t$
\[
X_t := \int_0^t f(s) dB_s \ , \ t \in [0,T]
\]為 mean zero Gaussian process 且有互相獨立增量與 covariance function
\[
Cov(X_s,S_t) = \int_0^{s \wedge t} f^2(u) du
\]除此之外,如果我們取在 $[0,T]$  上 Partition 定義如下
\[
t_i := iT/n, \ 0 \leq i \leq n
\] ,且選擇 $t_i^*$ 滿足 $t_{i-1} \leq t_i^* \leq t_i \ , \forall 1 \leq i \leq n$,則我們有 Riemann Representation 如下:
\[
\lim_{n \rightarrow \infty} \sum_{i=1}^{n} f(t_i^*) (B_{t_i} - B_{t_{i-1}}) = \int_0^T f(s) dB_s
\]其中上述 Limit 表 convergence in probability.

Proof
此處的 Riemann Representation proof 可視為 之前 我們討論過的 對隨機函數 $f(B_s)$ 的 Riemann Representation 的特例, 詳細證明請參閱之前文章
[隨機分析] Ito Integra…

[隨機分析] Ito Integral 淺談 (IV) - Ito Integral on L^2 Local space and its Riemann Representation

延續 第三篇,
[隨機分析] Ito Integral 淺談 (III) - Localization

我們有了 Localizing sequence $\{ \upsilon_n \}$之後,便可以開始著手拓展 Ito Integral 到 $f \in L_{LOC}^2[0, T]$。亦即
\[
\int_0^t f(\omega,s) dB_s \ \ \text{for $f \in L_{LOC}^2[0,T]$}
\]
在定義上述Ito Integral之前,我們需要先介紹一個新的概念: Local Martingale

========
Definition (Local Martingale)
考慮 $t \in [0,T]$,令 $M_t$ 為一個對 filtration $\{ \mathcal{F}_t\}$ adapted 的隨機過程,則我們說 $M_t$ 為一個 Local Martingale 若下列條件成立:
存在一組 停止時間 的sequence  $\upsilon_1(\omega) \leq \upsilon_2(\omega) \leq ... \leq \upsilon_n(\omega) \leq ...$ 使得對所有的 $n$, \[ M_{t \wedge \upsilon_n(\omega)} - M_0 \] 為一個 Martingale, 且機率 $P\left( \bigcup\limits_n {\left\{ {\upsilon_n(\omega) = T} \right\}} \right) =1$ ========
Comment: 上述的一組停止時間的sequence 即為我們先前所介紹的 Localizing sequence。


有了 Local Martingale 在手之後,我們便可以開始著手拓展Ito Integral 到 $f \in L_{LOC}^2[0, T]$。

=============
Definition: (Construction of the Ito Integral for $f \in L_{LOC}^2$)
考慮對所有 $n$, $X_{n,t}$ 為連續時間的 Ito Integral。
\[
X_{n,t} := \int_0^t f(\omega, s) \cdo…

[隨機分析] Ito Integral 淺談 (III) - Localization

這次要介紹的是 Localization 的概念。

回憶之前我們所定義的 Ito Integral 都要求 我們的積分變數 $f \in \mathcal{H}^2$,亦即積分變數必須滿足如下 $L^2$ 可積性條件
\[
E \left[ \int_0^T f^2(\omega, t) dt \right] < \infty
\]
現在如果我們考慮如下 Ito Integral:
考慮 $g : \mathbb{R} \rightarrow \mathbb{R}$ 為連續函數
\[
\int_0^t g(B_s)dB_s
\]則此 連續函數的積分變數 $g$ 並無法滿足我們的可積性條件 (WHY?):比如說如果我們選擇
\[
g(B_t) :={e^{{B_t}^4}}
\],為一個連續函數,但如果我們現在去觀察其期望值: (by Jensen's inequality)
\[
E[{e^{{B_t}^4}}] \ge {e^{E[{B_t}^4]}} = {e^{E[{B_t}^4]}} = {e^{3{t^2}}}
\]上式透過Jensen inequality告訴我們有明確的下界,但並無上界 (隨著 $t$ 變大,下界跟著exponetially 變大),也就是說 $E[{e^{{B_t}^4}}] \rightarrow \infty$ 還沒開始積分就爆掉了。為了解決這個問題。 我們需要進一步拓展可積分的函數範圍,我們利用 Stopping time來巧妙的幫助我們拓展Ito Integral至更廣泛的函數 (EX: 連續函數)。

------------------------
Definition: $f \in L_{LOC}^2 [0,T]$ space
令函數 $f: \Omega \times [0,T] \rightarrow \mathbb{R}$ 為 measurable 與 adapted;若存在一組 非遞減 (nondecreasing) 停止時間(stopping time) 的 sequence
\[
\upsilon_1(\omega) \leq \upsilon _2(\omega) \leq ... \leq \upsilon_n(\omega) \leq ...
\] 使得 $f_n(\omega,t) …

[隨機分析] Ito Integral 淺談 (II) - 再論 Ito 積分的建構

回憶前篇[隨機分析] Ito Integral 淺談 (I) - Ito 積分的建構與Ito Isometry property
,我們討論了在 $\mathcal{H}^2$ 空間 且固定時刻 $T$ 的隨機積分 的建構。
\[
 I_T(f)(\omega) = \int_0^T f(\omega, t) dB_t \]
現在我們進一步放寬固定時刻 $T$ 的限制。使其拓展到 任意時刻 $t < T$

在拓展積分之前我們先介紹一個方便使用的剪切函數 (truncation function) $m_t(\omega,s)$

------------------
Definition: (Truncation function)
定義
\[{m_t}\left( {\omega ,s} \right): = \left\{ \begin{array}{l}
1{,_{}} \ \ \ s \le t\\
0{,_{}} \ \ \ s > t
\end{array} \right.\]
--------------------

有了 $m_t(\omega,s)$ 後,現在給定 $f \in \mathcal{H}^2[0,T]$,對 $t<T$ 我們可以定義被剪切過的函數 $f$ 稱作 $f^{(t)}$ 如下:
\[
f^{(t)}(\omega,s):=f(\omega,s) \cdot m_t(\omega,s)\]
接著我們說對應被剪切過函數的隨機積分  $I_t (f^{(t)}) = I_T(m_t \cdot f) $  almost surely.

Claim:  $f \in \mathcal{H}^2[0,T]$,$I_t (f^{(t)}) = I_T(m_t \cdot f) $  almost surely.

Proof
首先由於 $f \in \mathcal{H}^2$,由之前在第一篇提及的 LEMMA ( $\mathcal{H}_0^2$  $\text{is Dense in}$ $\mathcal{H}^2$) 可知,我們可以找到一組 approximating sequence $f_n \in \mathcal{H}_0^2$ 使得當 $n \rightarrow \infty$,
\[
||f - f_n…

[最佳化理論] Conjugate Direction Methods (2) - The Conjugate Gradient Algorithm for Quadratic Objective function

OK,現在接續前面兩篇
1. [最佳化理論] Conjugate Direction Methods (0) -Theory
2. [最佳化理論] Conjugate Direction Methods (1) - Basic Algorithm for Quadratic Objective function

這次要來解決如何找到 Conjugate Direction的辦法。幫助我們找到 Conjugate Direction 的方法稱作 共軛梯度演算法 (Conjugate Gradient algorithm) 。

此演算法 藉由 梯度的幫助,使得在任意跌代步驟中,Conjugate Direction 可以由 前一個跌代步的方向 與 現在的 梯度做線性組合來計算出來。且用此法所產生的 Direction 可以保證是 每個方向都是互為 Q-conjugate。故名為 Conjugate Gradient Algorithm;最後我們會給出一個以 二階具有 $n=3$ 個變數的目標函數 作為例子來展示這套方法。

===============

如前所述,考慮標準二階目標函數
\[
J(u) = \frac{1}{2} u^T Q u - u^T b, \ u \in \mathbb{R}^n
\]
其中 $Q = Q^T >0$。

現在我們來看看Conjugate Gradient Algorithm 是如何找到 Conjugate Direction:

對 初始跌代步:$k=0$。
給定任意初始值 $x^{(0)}$ ,且設定 初始方向為最陡坡度(steepest descent)方向,亦即

$d^{(0)} = - \bigtriangledown J(u^{(0)})$

因此 $ u^{(1)} = u^{(0)} + \alpha_0 d^{(0)}$

其中 $\alpha_0$ 一般而言是由line search (一般而言使用MATLAB fminsearch 指令較為簡便)得到,亦即 $\alpha_0 = \arg \min J(x^{(0)} + \alpha d^{(0)})$
不過如果是 考慮 二階目標函數中,則我們可以求得精確的 $\alpha_k$ 如下式
\[
\alpha_0 = \arg \min J(x^{(0)} + \…

[最佳化理論] Conjugate Direction Methods (1) - Basic Algorithm for Quadratic Objective function

再接續前面介紹過的 [最佳化理論] Conjugate Direction Methods (0) -Theory

這次我們要介紹 Basic Conjugate Direction Methods  對於 標準二階目標函數的應用。現在考慮下列標準 二階 具有 n 個變數的目標函數
\[
J(u) = \frac{1}{2} u^T Q u + b^T u +c
\] 其中 $Q=Q^T >0$ 且 $u \in \mathbb{R}^n$

Comments:
注意到標準二階目標函數,我們知道 其真正的最佳解為何。 (why?)
由 一階必要條件 FONC: $\bigtriangledown J(u^*) =0$ 可知
\[
\bigtriangledown J^T(u) = \frac{1}{2} \left[ {{{\left( {Qu} \right)}^T} + {u^T}Q} \right] + {b^T} = 0
\]因為 $Q^T = Q$ ,上式可改寫
\[ \bigtriangledown J(u) = Q u + {b} = 0 \Rightarrow u^* =  - {Q^{ - 1}}b \]再者檢驗二階充分條件 SOSC (Hessian Condition): ($\bigtriangledown^2 J(u^*) > 0$)

$ \bigtriangledown^2 J(u) =Q $ 又因為我們說  $Q$ 為正定矩陣。故 $ \bigtriangledown^2 J(u) =Q >0 $; 亦即 $u^* =  - {Q^{ - 1}}b$ 為 Strong Local minimum (在此例中, $u^* =  {Q^{ - 1}}b$ 亦為 Global minimum)。

------------------

對於上述的標準二階目標函數而言,Conjugate Direction Algorithm 設計如下

============================
Basic Conjugate Direction Algorithm

給定初始值 $u^{(0)}$ 與 Q-conjugate 方向 $d^{(0)}, d^{(1)}, ..., d^{(n-1)}$;對 $k \geq 0$

$ {{…

[最佳化理論] Conjugate Direction Methods (0) -Basic Theory

這次要跟大家介紹的是最佳化理論中的 一類 算法;叫做 Conjugate Direction Methods (共軛方向演算法)。此次我們主要focus在理論部分。實際演算法實現留待之後再介紹
(想要看算法的讀者建議直接閱讀 [最佳化理論] Conjugate Direction Methods (2) - The Conjugate Gradient Algorithm for Quadratic Objective function )

注意這邊我用 Method"s",表示所謂的Conjugate Direction Method有很多種。所以我們稱之為這一類。在介紹之前先說說這類 計算方法 有甚麼特色
對於 2階 具有n個變數的 目標函數 (Quadratic Objective function with n variables) 可以在 n步驟內求解。(也就是對二階目標函數收斂性很好 (求解的計算速度夠快) ) 一般而言常用的 Conjugate Direction Gradient Algorithm 方法不需要計算 Hessian MatrixConjugate Direction Methods 不須計算反矩陣Comments: 上述的2階 具有n個變數的 目標函數 表示如下:
對 $u \in \mathbb{R}^n$ , $Q$ 為 對稱 且 正定矩陣  $Q=Q^T \succ 0$ ,目標函數寫為 \[
J(u) = \frac{1}{2} u^T Q u - u^T b
\]
那麼現在我們來問問,什麼叫Conjugate Direction??
本質上來說就是他是一個 方向 (也就是向量 )! 具有共軛 (Conjugate) 的性質。所以我們得先知道什麼叫做 Conjugate;以下一組向量  $ d^{(0)}, d^{(1)}, ..., d^{(m)}$ 被稱作 Conjugate 的定義

-----------------
${ \bf \text{Definition: (Q-Conjugate)}}$
令 $Q$ 為一個 real symmetric $n \times n$ 矩陣。其方向 $ d^{(0)}, d^{(1)}, ..., d^{(m)}$ 稱作 Q-conjugate 如果下列條件成立:

[隨機分析] Ito Integral 淺談 (I) - Ito Integral 的建構與 Ito Isometry property

這次要介紹隨機分析中的 Ito  integral 的建構:

目標:建立下面的(隨機)積分 or  Ito integral 
\[
{\color {red} {I(f)(\omega) = \int_0^T f(\omega, t) dB_t}} \ \ \ \ (*) \]
其中 $T$ 為固定時間, $B_t$ 是標準布朗運動(Standard Brownian motion)。 $f(\omega, t)$是一個隨機過程。
$I(f) (\omega)$ 表示積分為一個 mapping (之後會定義該從哪邊mapping到哪邊),且積分完畢之後會是一個隨機變數 (function of $\omega$)

Comment:
你可能會問上面的積分跟一般積分有何不同!?
第一 是積分變數 $f(\omega,t)$ 不再是定數。此時的積分變數為一個隨機過程。
第二是 後方積分對象 $dB_t$ 亦為一個隨機過程 (標準布朗運動)。此時會使原本的Riemann -Stieltjes 積分無法定義(因為寫成sum之後左端點與右端點的答案不同)。 ( Ito Integral 選擇左端點因為之後會有較好的性質 ( Ito integral is (Local) martingale. )不過這是後話。)

建構 Ito 積分的想法如下:
先透過一類簡單的函數定義出上面的積分。再將其定義域擴展到更廣的函數類別。


積分變數(Integrand)需要那些條件?
為了要讓上述的積分可以make sense, $(*)$ 式子中的積分變數 $f(\omega,t)$ 必須先滿足一些基本的可測性 (measurability) 與可積分 (integrability) 的條件。

首先考慮可測性(measurability):
令 $\mathcal{B}:=$ the smallest $\sigma$-algebra that contains all of the open subsets of $[0, T]$
$\{ \mathcal{F}_t \}:=$ be standard Brownian filtration
且對所有的 $t \geq 0$, $\mathcal{F}_t \times \mathcal{B}:=$ the smallest $\sigma$-alge…